2,087 research outputs found

    Survey of Error Concealment techniques: Research directions and open issues

    Full text link
    © 2015 IEEE. Error Concealment (EC) techniques use either spatial, temporal or a combination of both types of information to recover the data lost in transmitted video. In this paper, existing EC techniques are reviewed, which are divided into three categories, namely Intra-frame EC, Inter-frame EC, and Hybrid EC techniques. We first focus on the EC techniques developed for the H.264/AVC standard. The advantages and disadvantages of these EC techniques are summarized with respect to the features in H.264. Then, the EC algorithms are also analyzed. These EC algorithms have been recently adopted in the newly introduced H.265/HEVC standard. A performance comparison between the classic EC techniques developed for H.264 and H.265 is performed in terms of the average PSNR. Lastly, open issues in the EC domain are addressed for future research consideration

    Enhanced Data Hiding Using Some Attribute of Color Image

    Get PDF
    Images are one of the most widely used multimedia in the correspondence between people, as some of the characteristics of these images can be used to hide important messages. Each image has different characteristics, and the method of concealment changes depending on the characteristics of the image used. In this research, an algorithm was proposed to increase the efficiency of the data embedding algorithm by relying on some of the characteristics of the colored digital image. First, the color image is dismantled to the basic color layers (red, green, blue). Then, the amount of variation in each layer is measured by using image processing techniques. After that, the high contrast layer is identified and used as a cover to include the message to be included, while the other two layers are used as a key to the encryption algorithm that is applied to the text before the embedding process to increase data security.The method of concealment depends on the first and second bit values in the selected layer as a cover for the embedding process. Three criteria were used to measure the efficiency of the proposed algorithm. © 2023 IEEE

    Color image steganography in YCbCr space

    Get PDF
    Steganography is a best method for in secret communicating information during the transference of data. Images are an appropriate method that used in steganography can be used to protection the simple bits and pieces. Several systems, this one as color scale images steganography and grayscale images steganography, are used on color and store data in different techniques. These color images can have very big amounts of secret data, by using three main color modules. The different color modules, such as HSV-(hue, saturation, and value), RGB-(red, green, and blue), YCbCr-(luminance and chrominance), YUV, YIQ, etc. This paper uses unusual module to hide data: an adaptive procedure that can increase security ranks when hiding a top secret binary image in a RGB color image, which we implement the steganography in the YCbCr module space. We performed Exclusive-OR (XOR) procedures between the binary image and the RGB color image in the YCBCR module space. The converted byte stored in the 8-bit LSB is not the actual bytes; relatively, it is obtained by translation to another module space and applies the XOR procedure. This technique is practical to different groups of images. Moreover, we see that the adaptive technique ensures good results as the peak signal to noise ratio (PSNR) and stands for mean square error (MSE) are good. When the technique is compared with our previous works and other existing techniques, it is shown to be the best in both error and message capability. This technique is easy to model and simple to use and provides perfect security with unauthorized

    A High Secured Steganalysis using QVDHC Model

    Get PDF
    Data compression plays a vital role in data security as it saves memory, transfer speed is high, easy to handle and secure. Mainly the compression techniques are categorized into two types. They are lossless, lossy data compression. The data format will be an audio, image, text or video. The main objective is to save memory of using these techniques is to save memory and to preserve data confidentiality, integrity. In this paper, a hybrid approach was proposed which combines Quotient Value Difference (QVD) with Huffman coding. These two methods are more efficient, simple to implement and provides better security to the data. The secret message is encoded using Huffman coding, while the cover image is compressed using QVD. Then the encoded data is embedded into cover image and transferred over the network to receiver. At the receiver end, the data is decompressed to obtain original message. The proposed method shows high level performance when compared to other existing methods with better quality and minimum error

    An adaptive error resilient scheme for packet-switched H.264 video transmission

    Get PDF
    2010-2011 > Academic research: refereed > Chapter in an edited book (author)Version of RecordPublishe

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced
    corecore