27,015 research outputs found

    3D Face tracking and gaze estimation using a monocular camera

    Get PDF
    Estimating a user’s gaze direction, one of the main novel user interaction technologies, will eventually be used for numerous applications where current methods are becoming less effective. In this paper, a new method is presented for estimating the gaze direction using Canonical Correlation Analysis (CCA), which finds a linear relationship between two datasets defining the face pose and the corresponding facial appearance changes. Afterwards, iris tracking is performed by blob detection using a 4-connected component labeling algorithm. Finally, a gaze vector is calculated based on gathered eye properties. Results obtained from datasets and real-time input confirm the robustness of this metho

    HeadOn: Real-time Reenactment of Human Portrait Videos

    Get PDF
    We propose HeadOn, the first real-time source-to-target reenactment approach for complete human portrait videos that enables transfer of torso and head motion, face expression, and eye gaze. Given a short RGB-D video of the target actor, we automatically construct a personalized geometry proxy that embeds a parametric head, eye, and kinematic torso model. A novel real-time reenactment algorithm employs this proxy to photo-realistically map the captured motion from the source actor to the target actor. On top of the coarse geometric proxy, we propose a video-based rendering technique that composites the modified target portrait video via view- and pose-dependent texturing, and creates photo-realistic imagery of the target actor under novel torso and head poses, facial expressions, and gaze directions. To this end, we propose a robust tracking of the face and torso of the source actor. We extensively evaluate our approach and show significant improvements in enabling much greater flexibility in creating realistic reenacted output videos.Comment: Video: https://www.youtube.com/watch?v=7Dg49wv2c_g Presented at Siggraph'1

    CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images

    Full text link
    With the powerfulness of convolution neural networks (CNN), CNN based face reconstruction has recently shown promising performance in reconstructing detailed face shape from 2D face images. The success of CNN-based methods relies on a large number of labeled data. The state-of-the-art synthesizes such data using a coarse morphable face model, which however has difficulty to generate detailed photo-realistic images of faces (with wrinkles). This paper presents a novel face data generation method. Specifically, we render a large number of photo-realistic face images with different attributes based on inverse rendering. Furthermore, we construct a fine-detailed face image dataset by transferring different scales of details from one image to another. We also construct a large number of video-type adjacent frame pairs by simulating the distribution of real video data. With these nicely constructed datasets, we propose a coarse-to-fine learning framework consisting of three convolutional networks. The networks are trained for real-time detailed 3D face reconstruction from monocular video as well as from a single image. Extensive experimental results demonstrate that our framework can produce high-quality reconstruction but with much less computation time compared to the state-of-the-art. Moreover, our method is robust to pose, expression and lighting due to the diversity of data.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence, 201

    A Trip to the Moon: Personalized Animated Movies for Self-reflection

    Full text link
    Self-tracking physiological and psychological data poses the challenge of presentation and interpretation. Insightful narratives for self-tracking data can motivate the user towards constructive self-reflection. One powerful form of narrative that engages audience across various culture and age groups is animated movies. We collected a week of self-reported mood and behavior data from each user and created in Unity a personalized animation based on their data. We evaluated the impact of their video in a randomized control trial with a non-personalized animated video as control. We found that personalized videos tend to be more emotionally engaging, encouraging greater and lengthier writing that indicated self-reflection about moods and behaviors, compared to non-personalized control videos
    corecore