194 research outputs found

    Design and Assessment of Vibrotactile Biofeedback and Instructional Systems for Balance Rehabilitation Applications.

    Full text link
    Sensory augmentation, a type of biofeedback, is a technique for supplementing or reinforcing native sensory inputs. In the context of balance-related applications, it provides users with additional information about body motion, usually with respect to the gravito-inertial environment. Multiple studies have demonstrated that biofeedback, regardless of the feedback modality (i.e., vibrotactile, electrotactile, auditory), decreases body sway during real-time use within a laboratory setting. However, in their current laboratory-based form, existing vibrotactile biofeedback devices are not appropriate for use in clinical and/or home-based rehabilitation settings due to the expense, size, and operating complexity of the instrumentation required. This dissertation describes the design, development, and preliminary assessment of two technologies that support clinical and home-based balance rehabilitation training. The first system provides vibrotactile-based instructional motion cues to a trainee based on the measured difference between the expert’s and trainee’s motions. The design of the vibrotactile display is supported by a study that characterizes the non-volitional postural responses to vibrotactile stimulation applied to the torso. This study shows that vibration applied individually by tactors over the internal oblique and erector spinae muscles induces a postural shift of the order of one degree oriented in the direction of the stimulation. Furthermore, human performance is characterized both experimentally and theoretically when the expert–trainee error thresholds and nature of the control signal are varied. The results suggest that expert–subject cross-correlation values were maximized and position errors and time delays were minimized when the controller uses a 0.5 error threshold and proportional plus derivative feedback control signal, and that subject performance decreases as motion speed and complexity increase. The second system provides vibrotactile biofeedback about body motion using a cell phone. The system is capable of providing real-time vibrotactile cues that inform corrective trunk tilt responses. When feedback is available, both healthy subjects and those with vestibular involvement significantly reduce their anterior-posterior or medial-lateral root-mean-square body sway, have significantly smaller elliptical area fits to their sway trajectory, spend a significantly greater mean percentage time within the no feedback zone, and show a significantly greater A/P or M/L mean power frequency.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91546/1/channy_1.pd

    Vibrotactile Sensory Augmentation and Machine Learning Based Approaches for Balance Rehabilitation

    Full text link
    Vestibular disorders and aging can negatively impact balance performance. Currently, the most effective approach for improving balance is exercise-based balance rehabilitation. Despite its effectiveness, balance rehabilitation does not always result in a full recovery of balance function. In this dissertation, vibrotactile sensory augmentation (SA) and machine learning (ML) were studied as approaches for further improving balance rehabilitation outcomes. Vibrotactile SA provides a form of haptic cues to complement and/or replace sensory information from the somatosensory, visual and vestibular sensory systems. Previous studies have shown that people can reduce their body sway when vibrotactile SA is provided; however, limited controlled studies have investigated the retention of balance improvements after training with SA has ceased. The primary aim of this research was to examine the effects of supervised balance rehabilitation with vibrotactile SA. Two studies were conducted among people with unilateral vestibular disorders and healthy older adults to explore the use of vibrotactile SA for therapeutic and preventative purposes, respectively. The study among people with unilateral vestibular disorders provided six weeks of supervised in-clinic balance training. The findings indicated that training with vibrotactile SA led to additional body sway reduction for balance exercises with head movements, and the improvements were retained for up to six months. Training with vibrotactile SA did not lead to significant additional improvements in the majority of the clinical outcomes except for the Activities-specific Balance Confidence scale. The study among older adults provided semi-supervised in-home balance rehabilitation training using a novel smartphone balance trainer. After completing eight weeks of balance training, participants who trained with vibrotactile SA showed significantly greater improvements in standing-related clinical outcomes, but not in gait-related clinical outcomes, compared with those who trained without SA. In addition to investigating the effects of long-term balance training with SA, we sought to study the effects of vibrotactile display design on people’s reaction times to vibrational cues. Among the various factors tested, the vibration frequency and tactor type had relatively small effects on reaction times, while stimulus location and secondary cognitive task had relatively large effects. Factors affected young and older adults’ reaction times in a similar manner, but with different magnitudes. Lastly, we explored the potential for ML to inform balance exercise progression for future applications of unsupervised balance training. We mapped body motion data measured by wearable inertial measurement units to balance assessment ratings provided by physical therapists. By training a multi-class classifier using the leave-one-participant-out cross-validation method, we found approximately 82% agreement among trained classifier and physical therapist assessments. The findings of this dissertation suggest that vibrotactile SA can be used as a rehabilitation tool to further improve a subset of clinical outcomes resulting from supervised balance rehabilitation training. Specifically, individuals who train with a SA device may have additional confidence in performing balance activities and greater postural stability, which could decrease their fear of falling and fall risk, and subsequently increase their quality of life. This research provides preliminary support for the hypothesized mechanism that SA promotes the central nervous system to reweight sensory inputs. The preliminary outcomes of this research also provide novel insights for unsupervised balance training that leverage wearable technology and ML techniques. By providing both SA and ML-based balance assessment ratings, the smart wearable device has the potential to improve individuals’ compliance and motivation for in-home balance training.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143901/1/baotian_1.pd

    An investigation into the utility of wearable sensor derived biofeedback on the motor control of the lumbar spine

    Get PDF
    Lower back pain (LBP) is a disability that affects a large proportion of the population and treatment for this has been shifting towards a more individualized, patient-centered approach. There has been a recent uptake in the utilization and implementation of wearable sensors that can administer biofeedback in various industrial, clinical, and performance-based settings. The overall aim of this Master’s thesis was to investigate how wearable sensors can be used in a sensorimotor (re)training approach, including how sensory biofeedback from wearable sensors can be used to improve measures of spinal motor control and proprioception. Two complementary research studies were completed to address this overall aim. As a systematic review, Study #1 focused on addressing the lack of consensus surrounding wearable sensor derived biofeedback and spine motor control. The results of this review suggest that haptic/vibrotactile feedback is the most common and that it is administered in an instantaneous real-time manner within most experimental paradigms. Further, study #1 identified clear gaps within the research literature. Specifically, future research would benefit from more clarity regarding study design, and movement instructions, and explicit definitions of biofeedback parameters to enhance reproducibility. The aim of Study #2 was to assess the acute effects of wearable sensor-derived auditory biofeedback on gross lumbar proprioception. To assess this, participants completed a target repositioning protocol, followed by a training period where they were provided with auditory feedback for two of four targets based on a percentage of their lumbar ROM. Results suggest that mid-range targets benefitted most from the acute auditory feedback training. Further, individuals with poorer repositioning abilities in the pre-training assessment showed the greatest improvements from the auditory feedback training. This suggests that auditory biofeedback training may be an effective tool to improve proprioception in those with proprioceptive deficits. Collectively these complimentary research studies will improve the understanding surrounding the ecological utility of wearable sensor derived biofeedback in industrial, clinical, and performance settings to enhance to sensorimotor control of the lumbar region

    Making sense of digitally remediated touch in virtual reality experiences

    Get PDF
    Touch, often called the ‘first sense’, is fundamental to how we experience and know ourselves, others and the world. Increasingly, touch is being brought into the digital landscape. This paper explores this shifting landscape to understand the ways in which touch is re-mediated in the context of virtual reality. With attention to the sensoriality and sociality of touch, it asks what ‘counts’ as touch in VR, how is touch experienced and how is it incorporated into meaning making. We present and discuss findings from a multimodal and multisensory study of 16 participants interacting in two VR experiences to describe: the participants’ material encounters with the virtual through a focus on touch practices, expectations and norms; the ways in which participants made meaning of (and with) virtual touch through their dynamic selection and orchestration of the range of semiotic and experiential resources available; and how these virtual touch experiences translated into discourses of touch in VR to emphasize continuities and change between the past, present and futures. The paper comments on the methodological challenges of researching touch in the emergent landscape of VR and asks how multimodality might engage newly with touch, perhaps the most under-rated and neglected of modes and senses, and its digital remediation

    A Hybrid Visual Control Scheme to Assist the Visually Impaired with Guided Reaching Tasks

    Get PDF
    In recent years, numerous researchers have been working towards adapting technology developed for robotic control to use in the creation of high-technology assistive devices for the visually impaired. These types of devices have been proven to help visually impaired people live with a greater degree of confidence and independence. However, most prior work has focused primarily on a single problem from mobile robotics, namely navigation in an unknown environment. In this work we address the issue of the design and performance of an assistive device application to aid the visually-impaired with a guided reaching task. The device follows an eye-in-hand, IBLM visual servoing configuration with a single camera and vibrotactile feedback to the user to direct guided tracking during the reaching task. We present a model for the system that employs a hybrid control scheme based on a Discrete Event System (DES) approach. This approach avoids significant problems inherent in the competing classical control or conventional visual servoing models for upper limb movement found in the literature. The proposed hybrid model parameterizes the partitioning of the image state-space that produces a variable size targeting window for compensatory tracking in the reaching task. The partitioning is created through the positioning of hypersurface boundaries within the state space, which when crossed trigger events that cause DES-controller state transition that enable differing control laws. A set of metrics encompassing, accuracy (DD), precision (θe\theta_{e}), and overall tracking performance (ψ\psi) are also proposed to quantity system performance so that the effect of parameter variations and alternate controller configurations can be compared. To this end, a prototype called \texttt{aiReach} was constructed and experiments were conducted testing the functional use of the system and other supporting aspects of the system behaviour using participant volunteers. Results are presented validating the system design and demonstrating effective use of a two parameter partitioning scheme that utilizes a targeting window with additional hysteresis region to filtering perturbations due to natural proprioceptive limitations for precise control of upper limb movement. Results from the experiments show that accuracy performance increased with the use of the dual parameter hysteresis target window model (0.91≤D≤10.91 \leq D \leq 1, μ(D)=0.9644\mu(D)=0.9644, σ(D)=0.0172\sigma(D)=0.0172) over the single parameter fixed window model (0.82≤D≤0.980.82 \leq D \leq 0.98, μ(D)=0.9205\mu(D)=0.9205, σ(D)=0.0297\sigma(D)=0.0297) while the precision metric, θe\theta_{e}, remained relatively unchanged. In addition, the overall tracking performance metric produces scores which correctly rank the performance of the guided reaching tasks form most difficult to easiest

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    The localisation of pain on the body : an experimental analysis

    Get PDF
    • …
    corecore