2 research outputs found

    Encoding tactile frequency and intensity information in the temporal pattern of afferent nerve impulses

    Full text link
    Using our hands to interact with the world around us produces complex vibrations travelling across the skin. These complex waves are transduced by tactile afferent neurons whose impulse patterns convey information about the external world. A major question in this field is how important the timing of these afferent impulses is in shaping perception. We have the means to investigate this question by artificially inducing impulse patterns using brief mechanical and electrical stimuli, allowing us to study the neural coding of vibrotactile sensory information. Our lab has used this to show that when mechanical pulses evoked impulse trains grouped into periodic bursts, perceived frequency corresponded to the duration of the silent inter-burst gap interval, rather than the periodicity or the mean impulse rate. In this thesis, we induced controlled impulse trains, while measuring the perceptual responses of human subjects using psychophysical methods to assess the dimensions of frequency and intensity. As electrical stimulation has broad utility in prosthetic applications, we first verified that the same perceived frequency as predicted by the burst gap was elicited with electrical pulses in subjects within the low frequency flutter range. We then tested whether this same coding mechanism also applied outside the flutter frequency range by conducting further experiments with higher pulse rates. We found that burst gap coding correctly predicted perceived frequencies above flutter, suggesting a generalised temporal processing strategy that operates on tactile afferent inputs spanning a broad range of frequencies. Next, we investigated perceived intensity where stimulus pulse rate was varied without changes in afferent population recruitment or in perceived frequency by using bursts of pulsatile stimuli. Increasing the number of pulses within a burst caused a significant increase in perceived intensity when electrical stimulation was used. Mechanical pulses with the same burst groupings did not produce a comparable intensity increase, possibly due to minimal variations in the population firing rate. These new insights into the encoding of tactile information through temporal patterning in peripheral impulse patterns may allow the multiplexing of frequency and intensity sensations with a fixed stimulation amplitude for use in neural interfaces to deliver sensory feedback information
    corecore