2,039 research outputs found

    Optimization of Container Line Networks with Flexible Demands

    Get PDF

    Liner Service Network Design

    Get PDF

    Uncertainty and the Value of Information in Hinterland Transport Planning

    Get PDF

    A PATH ENUMERATION REFORMULATION OF THE SCHEDULE MIXED INTEGER PROGRAM SUPPORTING EXPEDITIONARY ADVANCED BASE OPERATIONS.

    Get PDF
    The U.S. Marine Corps needs an accurate model for analyzing its logistical needs in support of Expeditionary Advanced Base Operations (EABO). EABO is a doctrinal method used by the U.S. Navy and Marine Corps for denying adversary forces access to the maritime global commons. Deployment and sustainment of forces engaged in EABO requires a distribution network supported by various surface and airborne connector platforms of differing capacity and speed. The Marine Corps currently has a model for analyzing its distribution networks in support of EABO, the Schedule Mixed Integer Program (S-MIP). However, the computational difficulty of S-MIP limits its usefulness in large-scale experiments. This thesis describes a path enumeration-based reformulation known as the Path Enumeration Mixed-Integer Program (PE-MIP). PE-MIP is designed to provide a less computationally difficult model than the antecedent model S-MIP. We compare the runtime of PE-MIP and the quality of its solutions with that of S-MIP model and find that PE-MIP provides faster and superior results to S-MIP. The application of PE-MIP by the research sponsor will further inform current Marine Corps and Navy operational plans, acquisition, and force structure decisions.Operational Analysis Directorate, USMC, QUANTICO, VA, 22134Major, United States Marine CorpsApproved for public release. Distribution is unlimited

    3-D lung deformation and function from respiratory-gated 4-D x-ray CT images : application to radiation treatment planning.

    Get PDF
    Many lung diseases or injuries can cause biomechanical or material property changes that can alter lung function. While the mechanical changes associated with the change of the material properties originate at a regional level, they remain largely asymptomatic and are invisible to global measures of lung function until they have advanced significantly and have aggregated. In the realm of external beam radiation therapy of patients suffering from lung cancer, determination of patterns of pre- and post-treatment motion, and measures of regional and global lung elasticity and function are clinically relevant. In this dissertation, we demonstrate that 4-D CT derived ventilation images, including mechanical strain, provide an accurate and physiologically relevant assessment of regional pulmonary function which may be incorporated into the treatment planning process. Our contributions are as follows: (i) A new volumetric deformable image registration technique based on 3-D optical flow (MOFID) has been designed and implemented which permits the possibility of enforcing physical constraints on the numerical solutions for computing motion field from respiratory-gated 4-D CT thoracic images. The proposed optical flow framework is an accurate motion model for the thoracic CT registration problem. (ii) A large displacement landmark-base elastic registration method has been devised for thoracic CT volumetric image sets containing large deformations or changes, as encountered for example in registration of pre-treatment and post-treatment images or multi-modality registration. (iii) Based on deformation maps from MOFIO, a novel framework for regional quantification of mechanical strain as an index of lung functionality has been formulated for measurement of regional pulmonary function. (iv) In a cohort consisting of seven patients with non-small cell lung cancer, validation of physiologic accuracy of the 4-0 CT derived quantitative images including Jacobian metric of ventilation, Vjac, and principal strains, (V?1, V?2, V?3, has been performed through correlation of the derived measures with SPECT ventilation and perfusion scans. The statistical correlations with SPECT have shown that the maximum principal strain pulmonary function map derived from MOFIO, outperforms all previously established ventilation metrics from 40-CT. It is hypothesized that use of CT -derived ventilation images in the treatment planning process will help predict and prevent pulmonary toxicity due to radiation treatment. It is also hypothesized that measures of regional and global lung elasticity and function obtained during the course of treatment may be used to adapt radiation treatment. Having objective methods with which to assess pre-treatment global and regional lung function and biomechanical properties, the radiation treatment dose can potentially be escalated to improve tumor response and local control
    • …
    corecore