
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-06

A PATH ENUMERATION REFORMULATION OF
THE SCHEDULE MIXED INTEGER PROGRAM
SUPPORTING EXPEDITIONARY ADVANCED
BASE OPERATIONS.

Mirsch, Andrew M.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/70755

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

A PATH ENUMERATION REFORMULATION OF THE
SCHEDULE MIXED INTEGER PROGRAM

SUPPORTING EXPEDITIONARY ADVANCED BASE
OPERATIONS

by

Andrew M. Mirsch

June 2022

Thesis Advisor: Emily M. Craparo
Co-Advisor: W. Matthew Carlyle
Second Reader: Thomas W. Lucas

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2022 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
A PATH ENUMERATION REFORMULATION OF THE SCHEDULE MIXED
INTEGER PROGRAM SUPPORTING EXPEDITIONARY ADVANCED BASE
OPERATIONS

 5. FUNDING NUMBERS

 6. AUTHOR(S) Andrew M. Mirsch

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 The U.S. Marine Corps needs an accurate model for analyzing its logistical needs in support of
Expeditionary Advanced Base Operations (EABO). EABO is a doctrinal method used by the U.S. Navy and
Marine Corps for denying adversary forces access to the maritime global commons. Deployment and
sustainment of forces engaged in EABO requires a distribution network supported by various surface and
airborne connector platforms of differing capacity and speed. The Marine Corps currently has a model for
analyzing its distribution networks in support of EABO, the Schedule Mixed Integer Program (S-MIP).
However, the computational difficulty of S-MIP limits its usefulness in large-scale experiments. This thesis
describes a path enumeration-based reformulation known as the Path Enumeration Mixed-Integer Program
(PE-MIP). PE-MIP is designed to provide a less computationally difficult model than the antecedent model
S-MIP. We compare the runtime of PE-MIP and the quality of its solutions with that of S-MIP model and
find that PE-MIP provides faster and superior results to S-MIP. The application of PE-MIP by the research
sponsor will further inform current Marine Corps and Navy operational plans, acquisition, and force
structure decisions.

 14. SUBJECT TERMS
modeling, network flows, distribution, expeditionary advanced base operations 15. NUMBER OF

PAGES
 127
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

A PATH ENUMERATION REFORMULATION OF THE SCHEDULE MIXED
INTEGER PROGRAM SUPPORTING EXPEDITIONARY ADVANCED BASE

OPERATIONS

Andrew M. Mirsch
Major, United States Marine Corps

BS, United States Naval Academy, 2010

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
June 2022

Approved by: Emily M. Craparo
 Advisor

 W. Matthew Carlyle
 Co-Advisor

 Thomas W. Lucas
 Second Reader

 W. Matthew Carlyle
 Chair, Department of Operations Research

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 The U.S. Marine Corps needs an accurate model for analyzing its logistical needs

in support of Expeditionary Advanced Base Operations (EABO). EABO is a doctrinal

method used by the U.S. Navy and Marine Corps for denying adversary forces access to

the maritime global commons. Deployment and sustainment of forces engaged in EABO

requires a distribution network supported by various surface and airborne connector

platforms of differing capacity and speed. The Marine Corps currently has a model for

analyzing its distribution networks in support of EABO, the Schedule–Mixed Integer

Program (S-MIP). However, the computational difficulty of S-MIP limits its usefulness

in large-scale experiments. This thesis describes a path enumeration-based reformulation

known as the Path Enumeration Mixed-Integer Program (PE-MIP). PE-MIP is designed

to provide a less computationally difficult model than the antecedent model S-MIP. We

compare the runtime of PE-MIP and the quality of its solutions with that of S-MIP model

and find that PE-MIP provides faster and superior results to S-MIP. The application of

PE-MIP by the research sponsor will further inform current Marine Corps and Navy

operational plans, acquisition, and force structure decisions.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. RESEARCH PROBLEM ..1
B. RESEARCH QUESTIONS ...3
C. BACKGROUND ..4
D. ORGANIZATION OF THE THESIS ..8

II. LITERATURE REVIEW ...11
A. MOTIVATION FOR MILITARY LOGISTICS

OPTIMIZATION MODELS ..11
B. NETWORK THEORY TRANSPORTATION AND

DISTRIBUTION APPLICATIONS ...11
C. NETWORK THEORY APPLIED TO MILITARY LOGISTICS

MODELS ..14

III. MODEL FORMULATION AND RELATED MODELS19
A. INITIAL PE-MIP MODEL FORMULATION (PE-MIPV1)19

1. Sets and Indices ..22
2. Data [units] ...22
3. Decision Variables [units]..23
4. Formulation ..24

B. PE-MIP REFORMULATION (PE-MIPV2) ...25
1. Sets and Indices ..26
2. Data [units] ...26
3. Decision Variables [units]..26
4. Formulation ..27

C. PE-MIP AND S-MIP COMPARISON ...28
D. PE-MIP INPUT DATA..29

1. WhatWhere ..30
2. InputSerials ..31
3. HowFar ...32
4. HowFast ..32
5. ConnectorData ...33
6. ExperimentDesign ..33

IV. EXPERIMENTATION ...35
A. SOFTWARE ...35
B. DESIGN OF EXPERIMENTS ...36

viii

C. INITIAL EXPERIMENTS AND PE-MIP DEVELOPMENT36
1. Description of the Two MLR Deployment Problem36
2. Computational Difficulty and Large-Scale Experiments

with PE-MIPv1 and S-MIP ...37
3. Serial Path Filters for Reducing Computational Difficulty38

D. FINAL EXPERIMENTS ...39
1. Design of Final Experiment ...39
2. Final Experiment Results ..40

V. CONCLUSIONS AND FUTURE WORK ...49
A. TERMINATION CRITERIA ...49
B. INPUT FACTORS AND COMPUTATIONAL DIFFICULTY52

1. MAXK ...55
2. HOPS_ADD ..59
3. FASTPATHS ..61

C. OTHER MODEL ATTRIBUTES ..64
1. The Serial Builder Heuristic Algorithm64
2. Model Time Considerations ..64

D. RECOMMENDATIONS FOR FUTURE WORK65
1. Route Circulation Models ...65
2. Models with Adversarial Interdiction ..65
3. Improving the Serial Builder Heuristic Algorithm66

APPENDIX A. S-MIP MODEL FORMULATION ..67
A. SETS AND INDICES ..67
B. DATA [UNITS] ..67
C. DECISION VARIABLES [UNITS] ...67
D. FORMULATION ...68

APPENDIX B. PE-MIP DEVELOPMENT ...71
A. INITIAL EXPERIMENTS WITH PE-MIPv1 AND S-MIP71
B. EXPERIMENTS USING ADDITIONAL SERIAL PATH

FILTERS ..74
1. Experiments Using Breadth-First Search Path Length

Filter ..74
2. Excursions in Support of the Research Sponsor and

Subsequent Experimentation ..79
3. Experiments Using Transit Time Filters and

Reformulation to an Absolute Optimality Gap82

ix

APPENDIX C. CONNECTOR FARMER USER’S MANUAL (V0.17)
(UPTON 2021) ..83
A. CHANGE NOTES ...83
B. INTRODUCTION..83

1. Overview ...84
2. How ConnectorFarmer works ..85

C. PREREQUISITES ...85
D. CONNECTORFARMER INSTALLATION ..86
E. PREPARING TO RUN A DESIGNED EXPERIMENT87
F. RUNNING ..90

1. Running ConnectorFarmer...91
2. Running ConnectorMiner ...92
3. Appendix ...94

LIST OF REFERENCES ..99

INITIAL DISTRIBUTION LIST ...103

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. South China Sea Economic Exclusion Zones. Illustrated stakeholder
interest within the FIC. Source: DeMarco (2021).6

Figure 2. The SS Atlantic Conveyor after receiving two hits from Argentine
Exocet missiles. Source: Think Defence (2021). ...8

Figure 3. A simple example of a directed network. Bolded arcs depict the
minimum cost path from node 1 to node 4. ...20

Figure 4. A simple example of a directed network overlaid on the Spratly
Islands with nodes depicted in orange and arcs in green. Arc costs
and capacities are omitted. ...21

Figure 5. Initial PE-MIP formulation with objective function and constraints.24

Figure 6. PE-MIPv2 Formulation with objective function and constraints.27

Figure 7. S-MIP objective function. ..28

Figure 8. A screen grab of a simple WhatWhere worksheet, best viewed in
color to denote required versus not required columns. Adapted from
Freeman (2019) and Sentinella (2021). ...31

Figure 9. A screen grab of a simple InputSerials worksheet, best viewed in
color to denote required versus not required columns. Adapted from
Freeman (2019) and Sentinella (2021). ...31

Figure 10. A screen grab of a simple HowFar worksheet, best viewed in color.
Connector access appears on the right side of this sheet and the
distance matrix on the left side. Adapted from Freeman (2019) and
Sentinella (2021). ...32

Figure 11. A screen grab of a simple ConnectorData worksheet, best viewed in
color. Adapted from Freeman (2019) and Sentinella (2021).33

Figure 12. A screen grab of a simple ExperimentDesign worksheet, best viewed
in color. Adapted from Freeman (2019) and Sentinella (2021).33

Figure 13. Boxplot depicting model runtimes for integer optimal solutions
within tolerance achieved using an absolute optimality gap
termination criterion. ..50

Figure 14. Boxplot depicting time to deliver all serials by termination criteria.51

xii

Figure 15. Boxplot depicting the number of variables for DPs that delivered all
serials versus DPs that did not. ..52

Figure 16. Boxplot depicting the number of variables for DPs that delivered all
serials versus DPs that did not. ..53

Figure 17. Partition tree depicting the effect of input factor on the successful
delivery of all serials for each DP (row). ...54

Figure 18. Boxplot depicting time to deliver all serials by MAXK value.57

Figure 19. Boxplot depicting number of model variables by MAXK value for
DPs that delivered all serials. ...58

Figure 20. Boxplot depicting number of variables for DPs that delivered all
serials for HOPS_ADD = 0 and HOPS_ADD = 1.60

Figure 21. Boxplot depicting time to deliver all serial by HOPS_ADD = 0 or 1
for DPs that delivered all serials. ...61

Figure 22. Boxplot depicting time to deliver all serials by FASTPATH value.62

xiii

LIST OF TABLES

Table 1. Summary of input data specified via the Excel workbook if not using
user specified input serials. Variables in red text indicate minimal
requirements for the model to run. Adapted from Freeman (2019)
and Sentinella (2021). ..30

Table 2. Input variable levels used for final full factorial DOE40

Table 3. Summary of DPs that were not executed or did not record results
during the final experiment ..41

Table 4. Summary of DPs that returned integer optimal solutions within
tolerance in 24 hours or less. ..42

Table 5. Summary of DPs that delivered all serials but did not return integer
optimal solutions within tolerance in 24 hours or less.43

Table 6. Summary of DPs from the 48-hour time limit batch that returned
integer optimal solutions within tolerance. ..44

Table 7. Summary of DPs from the 48-hour time limit batch that delivered all
serials but did not return integer optimal solutions within tolerance.44

Table 8. Summary of DPs from the 72-hour time limit batch that delivered all
serials but did not integer optimal solutions within tolerance.45

Table 9. Summary of DPs that did not deliver all serials before exceeding
their time limit..46

Table 10. Summary statistics for number of variables in DPs that delivered all
serials versus DPs that did not. ..53

Table 11. Summary statistics for number of constraints in DPs that delivered
all serials versus DPs that did not. ...54

Table 12. Summary statistics for time to deliver all serials by MAXK value.57

Table 13. Summary statistics for quantity of model variables by MAXK value
for DPs that delivered all serials. ...58

Table 14. Summary statistics for number of model variables by HOPS_ADD
value. ..60

Table 15. Summary statistics for time to deliver all serials (in days) by
HOPS_ADD value. ..61

xiv

Table 16. Summary statistics for time to deliver all serials (in days) by
FASTPATH value. ...62

Table 17. DOE summary for DPs that failed to deliver all serials using
FASTPATH = 2. ..63

Table 18. Summary of key experiment output metrics comparing S-MIP and
PE-MIPv1 performance for a single MLR deployment problem.72

Table 19. Summary of key experiment output metrics comparing S-MIP and
PE-MIPv1 performance for a single MLR deployment problem using
both user-defined input serials and serials built using the model’s
heuristic algorithm. ..73

Table 20. Summary of factor inputs for initial experiment using path length
filters. ...74

Table 21. Summary of key experiment output metrics for PE-MIPv1 using
MAXHOPS = MINHOPS + 1 with user input serials76

Table 22. Summary of key experiment output metrics for a PE-MIP using
MAXHOPS = MINHOPS + 1 with serials built by the serial builder
heuristic algorithm. ..76

Table 23. Summary of key experiment output metrics for a PE-MIPv1 using
MAXHOPS = MINHOPS with serials built by the serial builder
heuristic algorithm ...77

Table 24. Summary of key experiment output metrics for PE-MIPv1 using
MAXHOPS = MINHOPS with user-defined input serials.77

Table 25. Serial paths generated by path enumeration code before and after
BFS path length and path capacity filters are applied.78

Table 26. Experiment factors varied by DP for the initial experiment with a
two MLR deployment problem. ...80

Table 27. Summary of key experiment output metrics for the trials successfully
conducted on Hamming during initial two MLR deployment
experimentation. ...80

Table 28. Summary of key experiment output metrics for the trials conducted
on Reaper during two MLR deployment experimentation.81

Table 29. Summary of key experiment output metrics for an exploratory trial
conducted on Hamming evaluating the utility of a reformulation
using an absolute optimality gap. ...82

xv

LIST OF ACRONYMS AND ABBREVIATIONS

A2/AD Anti-access/area denial

ATEM Air Tasking and Efficiency Model

BFS Breadth-first search

CD&I Combat Development & Integration

CENTCOM U.S. Central Command

DB Deutsche Bahn

DOE Design of experiments

DOD Department of Defense

DON Department of the Navy

EAB Expeditionary advanced base

EABO Expeditionary advanced base operations

EEZ Exclusive economic zone

FIC First Island Chain

HA/DR Humanitarian aid and disaster relief

IED Improvised explosive device

INFORMS Institute for Operations Research and the Management Sciences

LOCE Littoral operations in contested environments

MCAS MEU Amphibious Connector Scheduler

MCDP Marine Corps Doctrinal Publication

MEU Marine Expeditionary Unit

MLR Marine Littoral Regiment

MINLP Mixed integer linear program

MIP Mixed integer program

NPS Naval Postgraduate School

OAD Operations Analysis Division

OEF Operation Enduring Freedom

OIF Operation Iraqi Freedom

OPLAN Operational Plan

xvi

OR Operations Research

ORION On-Road Integrated Optimization and Navigation

PE Path enumeration

PE-MIP Path Enumeration-Mixed Integer Program

PE-MIPv1 Path Enumeration-Mixed Integer Program Version 1

PE-MIPv2 Path Enumeration-Mixed Integer Program Version 2

PRC People’s Republic of China

RSRP Rolling Stock Rotation Plan

SEED Simulation Experiments and Experimental Design

S-MIP Schedule Mixed Integer Program

SSTP Ship-to-Shore Transportation Problem

StS Ship-to-shore site

TACMN Table of authorized control number

TCC Total connector capacity

TEPF Expeditionary fast transports

TL Total loads

TRANSCOM U.S. Transportation Command

TSL Total serials legs

TSS Total serial size

UNCLOS United Nations Convention for the Law of the Sea

UPS United Parcel Service

VRP Vehicle routing problem

xvii

EXECUTIVE SUMMARY

Robust anti-access/area denial (A2/AD) capabilities developed by the People’s

Republic of China (PRC) and other competitors significantly challenge the United States’

ability to access and exert influence over key maritime terrain worldwide. A2/AD systems

are a collection of technologies designed to asymmetrically counter and negate American

maritime power projection forces like carrier strike groups and amphibious task forces.

Countering the asymmetric challenge of A2/AD systems is the focus of a new U.S. Navy–

Marine Corps operational concept: Expeditionary Advanced Base Operations (EABO)

(Department of the Navy [DON] 2021). The purpose of EABO is the interdiction and

imposition of cost on any PRC forces attempting to break out of the South China Sea (SCS)

into less-congested portions of the Pacific Ocean. In support of this purpose, the U.S.

Marine Corps is redefining itself as the “interior force” or “stand-in force” that operates in

the First Island Chain (FIC) inside the weapons engagement zone of PRC A2/AD forces

(DON 2021).

The EABO concept relies on forces operating within the effective range of the

enemy’s A2/AD weapon systems. Dispersion of forces is crucial for successful EABO

since massed forces represent a lucrative target for the enemy’s A2/AD weapons. The

survivability of dispersed EABO forces comes at the cost of simple and centralized

distribution networks used to logistically support Marine forces conducting EABO.

Therefore, the sustainment of EABO forces poses a daunting operational challenge for U.S.

Navy and Marine Corps planners. The U.S. Marine Corps currently has a sophisticated

optimization model for studying connector employment in support of EABO. This

optimization model is named the Schedule Mixed Integer Program (S-MIP). While S-MIP

produces useful results, S-MIP’s current run times are undesirably slow. The computational

complexity of S-MIP is such that it precludes large-scale detailed analysis of contingences

in support of operational plans. Naval Postgraduate School personnel have iteratively

improved S-MIP in support of a funded Naval Research Program and a previous student

thesis.

xviii

This thesis studies a path enumeration-based reformulation of S-MIP to answer the

following questions:

Can a heuristic model based on path enumeration provide solutions of
comparable quality to those resulting from the existing S-MIP, with
lower computation times?

What modification to or variations of the path enumeration heuristic
model provide better solutions with less computational expense?

Research initiated with a review of the antecedent model S-MIP and its

reformulation the Path Enumeration-Mixed Integer Program (PE-MIP), which was

developed by Naval Postgraduate School researchers during the period of November 2021-

February 2022.

Preliminary experiments focused on various means of filtering candidate (serial,

path) pairs, henceforth referred to as serial paths, to expedite model runtime. Although

these early efforts decreased the computational complexity of the model they did not result

in the decreased model runtimes desired by the sponsor. These initial results triggered a

reformulation of PE-MIP to use one of two possible termination conditions: an absolute

optimality gap and a relative optimality gap. The absolute optimality gap termination

condition causes PE-MIP to end upon finding a solution that delivers all input serials. The

relative optimality gap termination condition allows PE-MIP to run until finding a solution

within a user specified tolerance of the integer optimal solution. This reformulation resulted

in two separate means of employing PE-MIP. Final experiments with PE-MIP

demonstrated that use of an absolute optimality gap results in much faster model runtimes

at the cost of the quality of the solution. Conversely, using a relative optimality gap as the

model’s termination criteria can return better results at the cost of longer computation time.

The relationship between termination criteria and solution quality is illustrated in Figure 1.

xix

Figure 1. Boxplot depicting time to deliver all serials by termination criteria.

As shown by Figure 1, PE-MIP can return very desirable solutions regarding the

time to deliver all serials. However, these superior solutions come at the cost of longer

model runtimes. This trade-off illustrates two different methods of using PE-MIP for

deliberate versus rapid planning applications. The computational difficulty inherent in PE-

MIP prevents this model from returning solutions approaching integer optimality within

tolerances in a short model runtime. Computational difficulty is best illustrated by the

number of variables in each model design point. As the number of model variables

increases so does the complexity of the model resulting in failures by PE-MIP to deliver

all serials within a specified time limit.

xx

Figure 2. Boxplot depicting time to deliver all serials by termination criteria.

User inputs to PE-MIP can significantly affect the model’s performance regarding

the proportion of serials delivered and the time to deliver all serials. Input factors that

reduce computational difficulty generally return superior results despite the flexibility

given the model by inputs that result in more computational complexity.

Given the same two Marine Littoral Regiment deployment problem inputs PE-MIP

returns better solutions than S-MIP in a fraction of the time required by S-MIP. Despite

these improvements additional research is required to support the Marine Corps’ force

closure problem. Recommendations for future research include (1) developing a version of

PE-MIP for supporting sustainment operations that models use of connectors on rotational

routes akin to a city bus; (2) modifying PE-MIP to include adversarial interdiction

considerations; and (3) improving S-MIP’s heuristic serial building algorithm to create a

serial construction decision support tool that features relational rules about pairing

equipment types.

Reference

Department of the Navy (2021) Tentative Manual for Expeditionary Advanced Base
Operations. Washington, DC. https://www.mcwl.marines.mil/TMEABO/

xxi

ACKNOWLEDGMENTS

Many thanks to my advisory team, Dr. Emily Caparo and Dr. Matthew Carlyle.

Your support and guidance through this process was critical to the successful completion

of this research. Your willingness to work with me through complex problems and share

your precious time in support of this research is a testament to your professionalism and

strong work ethics. I also must express an abundance of appreciation to Mr. Stephen Upton

and Ms. Mary McDonald for their assistance on this project. Your support has been

indispensable to this project. Finally, I must express my absolute gratitude and unending

thanks to my wonderful wife and best friend, Rita. Your unending support throughout this

graduate program made all my work possible. You are a fantastic wife and mother; I am

truly blessed to have someone like you in my life.

xxii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

This thesis seeks to help the U.S. Navy and Marine Corps solve the problem of

optimally deploying Marine forces to distributed locations in support of emerging

operational concepts. In this chapter, we present the motivation for this research, its

underlying questions, pertinent background, and the organization of the thesis.

A. RESEARCH PROBLEM

In the immediate aftermath of the Soviet Union’s collapse, the United States

enjoyed a period of unchallenged naval supremacy. Throughout this period of military

ascendency, the United States projected power from the sea during numerous campaigns

in the Balkans, Africa, the Middle East, and South Asia. These campaigns all featured an

uncontested maritime environment in which American naval surface combatants,

amphibious forces, and carrier strike groups could operate with impunity. This period of

naval supremacy is over due to the reemergence of interstate military competition and the

proliferation of low cost but highly effect naval weapons. Therefore, America’s maritime

services must now reassess their operating environment, evaluate their opponents, and

develop novel solutions for new challenges.

The first chapter of Marine Corps Doctrinal Publication (MCDP) 3 Expeditionary

Operations is titled “The Landscape: Chaos in the Littorals” (Department of the Navy

[DON] 2018). Originally written in 1998 and unmodified for subsequent editions, this

chapter describes an anarchic environment of incessant competition between many

disparate factions seeking survival and supremacy in a Darwinian post-Cold War world

(DON 2018). This chapter’s description of the littoral environment remains relatively

accurate today. However, there is something noticeably lacking for today’s reader:

competition between peer nation states. The People’s Republic of China’s (PRC)

emergence as a major maritime power has added a new level of complexity to operations

in the littorals. American maritime forces now face the difficult task of competing with a

technologically evenly matched opponent in a complex and dynamic battlespace.

2

Robust anti-access/area denial (A2/AD) capabilities developed by the PRC and

other competitors significantly challenge the United States’ ability to access and exert

influence over key maritime terrain worldwide. A2/AD systems are a collection of

technologies designed to asymmetrically counter and negate American maritime power

projection forces like carrier strike groups and amphibious task forces. Massive salvos of

anti-ship cruise missiles, armed aerial drones, unmanned surface craft, naval mines,

hypersonic munitions, and other systems are elements of the PRC’s operational methods

of defeating American naval involvement in a Western Pacific conflict.

The U.S. Navy and Marine Corps are reorganizing and adopting new doctrine to

remain relevant and effective in the new operating environment characterizing a possible

conflict with the PRC. Described as littoral operations in contested environments (LOCE),

potential conflicts with the PRC in the Western Pacific are the focus of a new U.S. Navy–

Marine Corps operational concept: Expeditionary Advanced Base Operations (EABO).

The purpose of EABO is the interdiction and imposition of cost on any PRC forces

attempting to break out of the SCS into less-congested portions of the Pacific Ocean. In

support of this purpose, the U.S. Marine Corps is redefining itself as the “interior force” or

“stand-in force” that operates in the First Island Chain (FIC) inside the weapons

engagement zone of PRC A2/AD forces (Headquarters U.S. Marine Corps 2021).

In execution, EABO will feature small, distributed Marine detachments operating

networks of sensors and anti-ship/anti-aircraft weapons fighting in support of the U.S.

Navy (DON 2019). Defended by U.S. Marine infantry against PRC amphibious assault,

these expeditionary advanced bases (EABs) will serve as the U.S. Navy’s screening/

scouting force and comprise the “frontline” of a possible conflict with the PRC. The

geography of the Western Pacific and SCS combined with the distributed nature of EABO

is a significant challenge for U.S. Navy–Marine Corps logisticians. Deploying EABO

forces to their operating positions and sustaining them in combat requires optimal use of

limited surface and air connectors. EABs can only achieve their mission if rapidly and

effectively inserted into their initial operating positions and then sustained with critical

supplies.

3

The distributed nature of EABs implies great potential for isolation and subsequent

neutralization of EABs via starvation during combat with the PRC. Such an event is not

historically unprecedented in this part of the world. On several occasions during the Second

World War, allied forces isolated and neutralized Japanese positions in the Pacific that

were performing missions very similar to EABO. The purpose of this thesis is to provide

U.S. Navy-Marine Corps planners with a useful model to optimize its use of connectors in

support of EABO.

B. RESEARCH QUESTIONS

Deployment and sustainment of EAB forces is a daunting challenge for U.S. Navy-

Marine Corps planners. Real-world exercises and experiments concerning sustainment of

EABs are expensive and too infrequent to provide the data needed for an extensive study

of optimized connector employment. Therefore, the U.S. Marine Corps and Navy need a

model capable of providing meaningful insight and data on how to sustain EABO and other

operational planning considerations. The U.S. Navy and Marine Corps also need data to

inform decisions on what mixture of surface and air connector platforms to acquire for

supporting EABO.

The U.S. Marine Corps’ Operations Analysis Division (OAD), Combat

Development & Integration (CD&I) currently has a sophisticated optimization model for

studying connector employment in support of EABO. This optimization model, the

Schedule Mixed Integer Program (S-MIP), was developed by NPS Operations Research

graduate Lieutenant Colonel Nicholas Freeman in late 2019. While this model produces

useful results, S-MIP’s current run times are undesirably slow. The computational

difficulty of S-MIP is such that it precludes large-scale detailed analysis of contingences

in support of operational plans (OPLANs). Further work must be done to improve the run

time of S-MIP so that it can be employed as an aid for wargaming, operational planning,

and acquisitions decisions.

This thesis proposes a different model based on path enumeration to solve the

connector optimization problem for which S-MIP was designed. This thesis is intended to

answer the following questions:

4

• Can a heuristic model based on path enumeration provide solutions of

comparable quality to those resulting from the existing S-MIP, with lower

computation times?

• What modification to or variations of the path enumeration heuristic

model provide better solutions with less computational expense?

This research employs path-based enumeration techniques combined with

experimental design and data farming methods to provide insights on optimized connector

employment. It also supports analysis of a sponsor-provided force closure problem. The

force closure problem is the optimized deployment of a single Marine Littoral Regiment

(MLR) or several MLRs from their home station to their operating positions for EABO. If

successful, this research will provide the sponsor with an efficient and effective model to

replace S-MIP and other optimization models or a means of improving the computational

difficulty of S-MIP.

C. BACKGROUND

The FIC is the most likely location for a confrontation between the United States

and the PRC. Located in the Western Pacific, the FIC is a massive geographic feature

composed of several island groups and archipelagos. The FIC spans from the northern

shore of Borneo and the Philippines in the south to Kyushu in the Japanese home islands

in the north. The FIC is a natural barrier through which the PRC’s military and commercial

sea traffic must pass to reach the greater Pacific Ocean from the SCS. Several islands and

archipelagos in the FIC form natural chokepoints on the sea lanes exiting and entering the

SCS. These canalizing features are the key maritime terrain of a conflict in the FIC. Control

or denial of use of these key waterways to adversary forces is of great importance to

developing operational concepts intended for a possible conflict or confrontation in the

SCS. Ongoing tensions and disputes in the SCS indicate that continued competition and

possible conflict in this region are likely. There are currently several interested parties

maneuvering for position and extending their claims to critical maritime terrain in the SCS.

5

Maritime law is complex and different portions of the ocean are often claimed by

several nations. From 1973–1994, the United Nations incrementally wrote and established

the United Nations Convention for the Law of the Sea (UNCLOS) to codify the jurisdiction

of nations states over their adjoining oceans (Treves 2008). UNCLOS specified in 1982

that nations with shorelines have territorial waters, contiguous zones, and exclusive

economic zones (EEZ) extending 12 nautical miles (nm), 24 nm, and 200 nm respectively

from their shorelines (Treves 2008). While the United States is not a party to UNCLOS,

167 nations including the PRC are parties to UNCLOS (United Nations 2022). Although

the PRC is a party to UNCLOS, its behavior towards its neighbors regarding maritime

territorial claims is inconsistent with its treaty obligations under UNCLOS.

Tensions abound in and around the FIC due to a series of expansive maritime

territorial claims made by the PRC in the SCS. The PRC’s extraneous maritime claims are

collectively referred to as the “nine-dashed line” policy. These claims are so named due to

the dashed line of nine segments used to portray the PRC’s territorial waters in PRC

produced documents and media. The PRC’s maritime ambitions are so central to its

conception of itself and its foreign policy that the nine-dashed line even appears in the visa

pages of PRC-issued passports (Beech et al. 2016). PRC maritime territorial claims infringe

on the EEZs of Vietnam, the Philippines, Taiwan, Malaysia, and Indonesia as depicted in

Figure 1. These competing claims have resulted in various competitive activities between

the involved parties and some instances of limited violence.

6

Figure 1. South China Sea Economic Exclusion Zones. Illustrated

stakeholder interest within the FIC. Source: DeMarco (2021).

As tensions abound in the SCS, traditional methods of amphibious warfare are

challenged and disrupted by the PRC’s growing maritime and A2/AD capabilities. The last

significant opposed amphibious operation in American history was Operation CHROMITE

during the Korea War. Executed from 10–19 September 1950, Operation CHROMITE was

a wildly successful operation that dramatically reversed the situation on the Korean

peninsula. Undertaken as an operational turning movement, the successful U.S. Marine

Corps and U.S. Army landings at Inchon precipitated the collapse of communist forces

7

besieging Pusan and initiated the United Nations’ pursuit of defeated North Korean forces

to the Yalu River. However, the conditions under which Operation CHROMITE was

performed bear little resemblance to the current operating environment and its associated

challenges.

Though limited in scale, the Falklands War of 1982 offers a better picture of what

naval combat in the FIC could resemble. Fought between the United Kingdom and

Argentina in a remote part of the South Atlantic, this conflict featured naval, air, and ground

combat between two roughly evenly matched opponents. Critical study of the Falklands

War exposes some of the limits of and challenges to traditional amphibious operations in

the age of guided missile combat.

The United Kingdom lost two ships to Argentine Exocet missiles: the SS Atlantic

Conveyor, a commercial cargo ship taken into naval service, and the HMS Sheffield, a

Type 42 Guided Missile Destroyer (Middlebrook 2001). The HMS Glamorgan, another

British destroyer, was also damaged by a shore-launched Argentine Exocet missile while

providing naval surface fire support to Royal Marines fighting Argentine troops ashore. Of

the British ships destroyed, the SS Atlantic Conveyor was the most important victory

achieved by the Argentines during the conflict. This large ship contained critical matériel

necessary for combat ashore, including ten helicopters. The loss of these critical airlift

assets required British ground forces to hike 60 kilometers from their landing sites to

assault the provincial capital of Port Stanley rather than seize it via air assault as originally

planned (Middlebrook 2001). All these losses were inflicted on the British task force via

the very limited stock of Exocet missiles (an early 1970s era munition) possessed by

Argentina. The damage inflicted on the SS Atlantic Conveyor by Exocet missiles is shown

in Figure 2.

8

Figure 2. The SS Atlantic Conveyor after receiving two hits from Argentine
Exocet missiles. Source: Think Defence (2021).

The PRC’s A2/AD forces currently include massive quantities of guided missiles

of much greater capability and sophistication than those fielded by the Argentine forces

during the Falklands War (DON 2021). It does not require a great leap of imagination to

consider the implications of such a capability concerning an American amphibious task

force operating in the FIC opposed by PRC A2/AD systems. Continuing to execute

amphibious operations along 20th century era modes and methods is an unacceptably

hazardous proposition that risks severe attrition and mission failure for maritime forces.

This is particularly true with the limited number of high-value, high-cost amphibious ships

and maritime prepositioning vessels available to the U.S. Navy. The reduction of the

United States’ national shipbuilding industry means that any combat losses of large naval

vessels cannot be quickly replaced by new ship construction or deployment from other

theaters. As demonstrated by the example of the SS Atlantic Conveyor, logistical platforms

are a prime target for forces seeking to disrupt amphibious operations. Therefore, careful

husbanding of high-value logistical platforms and the optimized use of their associated

connectors is of great concern to U.S. Navy-Marine Corps planners.

D. ORGANIZATION OF THE THESIS

The outline for the remainder of this thesis is as follows: Chapter II, the literature

review, examines the applications of network theory in military and civilian logistics

9

optimization models. Chapter III, model formulation, discuses the formulation and

implementation of the Path Enumeration-Mixed Integer Program (PE-MIP) model used in

this thesis and its antecedent model, Lieutenant Colonel Freeman’s S-MIP. Chapter IV,

experimentation, covers the execution and results of experiments conducted during this

research. Chapter V is the conclusion chapter, and it contains a summary of this research’s

results and recommendations for future research.

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

II. LITERATURE REVIEW

This chapter contains a summary of previous relevant, selected research pertaining

to logistic optimization models employing network theory for military applications.

A. MOTIVATION FOR MILITARY LOGISTICS OPTIMIZATION MODELS

“Getting there the firstest with the mostest” (sic) and “amateurs talk tactics,

professionals talk logistics” are two common idioms in American military circles. These

idioms reflect a broader appreciation in American military culture for the vital importance

of logistics in planning and executing successful military operations. There has therefore,

unsurprisingly, been a significant amount of research conducted on logistics optimization

in support of military operations by America’s defense research institutions.

The Naval Postgraduate School (NPS) has produced a large volume of research

concerning military logistics optimization in its many forms. Military logistics is a very

broad term covering many activities including maintenance, supply, transportation, and

other functions. Therefore, it is necessary to limit this review to only research concerning

transportation and distribution applications. Due to the inherent nature of transportation

and distribution problems, these problems are most often modeled using network theory.

Chapter III of this thesis, Model Formulation, contains a basic description of underlying

concepts of network theory. The following sections of this chapter briefly describe some

historical applications of network theory to civilian and military transportation and

distribution problems.

B. NETWORK THEORY TRANSPORTATION AND DISTRIBUTION
APPLICATIONS

Network theory is endemic to modern life. Transportation networks,

communications networks, supply networks, social networks, and power networks affect

nearly every aspect of our daily lives. Naturally, this underlying structure of modernity has

elicited a significant amount of research and study in civilian and military contexts. The

origins of network theory stem from the famed mathematician Leonhard Euler’s 1736

paper The Seven Bridges of Konigsberg (Estrada et al. 2015). Network theory matured in

12

the industrial age as it was applied to various problems concerning newly built railroad

networks and telegraph communications systems.

Study of transportation problems through the lens of optimizing railroad traffic is

one of the oldest and most robust applications of network theory in an operations research

(OR) context. In 1930, Soviet mathematician A.N. Tolstoĭ made the foundational discovery

that the optimal solution for a transportation problem has no negative cost cycles in its

residual graph (Schrijver 2002). Tolstoĭ’s paper Methods of Finding the Minimal Total

Kilometrage in Cargo-transportation Planning in Space was an early large-scale

optimization problem designed to help the Soviet Union improve its industrial (and

military) capacity vis-à-vis its railroad network (Schrijver 2002). Since Tolstoĭ’s work, the

problem size and computational resources available to researchers studying railroad

transportation problems have both increased. Research on improving railroad

transportation networks has continued to today with many notable projects undertaken in

the last decade (Brondörfer et al. 2015).

Modern European railroad networks typically operate both passenger and freight

trains dispatched from several countries across the same lines. Passenger and freight trains

are scheduled and routed based on different priorities and with different requirements in

terms of the times at which they operate and the frequency/regularity with which they must

service different locations in Europe. In support of this problem, Germany’s national

railway company, Deutsche Bahn (DB), began developing in 2010 a decision support

system to improve freight routing. This decision support is based on a mixed integer

nonlinear program (MINLP) combined with an insertion heuristic which determines when

to insert (dispatch) a freight train into Germany’s railroad network (Brondörfer et al. 2015).

DB’s MINLP must account for high passenger train traffic during certain periods of the

day (morning/evening rush hour) and then minimize the summation of a congestion cost,

train running time, and length of each freight train’s route. Due to its complexity, DB’s

MINLP provides a heuristic solution for when to dispatch freight trains. However, with a

problem instance of 1,620 nodes, 5,162 arcs, and 3,350 trains, the heuristic solution was

shown to be on average 2% more costly than the optimal solution (Brondörfer et al. 2015).

13

Additional work by DB in the last decade concerning optimization of rolling stock

rotation earned DB recognition by the Institute for Operations Research and the

Management Sciences (INFORMS) at the 2020 Franz Edelman competition. DB’s Rolling

Stock Rotation Problem (RSRP) employed the idea of a hyperarc, which accounts for arcs

traversed by a train with a locomotive on both sides of the train. This modeling concept is

essential for RSRP since train rolling stock optimization must account for locomotive

orientation as a unique factor of railroad network efficiency because coupling and

reconnecting locomotives is a time-intensive process. DB’s decision support system was

shown to increase productivity of its locomotives and railcars by up to 10% while

simultaneously improving time savings by 80% (INFORMS, 2020).

Besides railroad optimization problems, many other distribution and transportation

problems have also been successfully modeled using network theory. The vehicle routing

problem (VRP) and its variations are heavily researched transportation and logistics

optimization problems founded on network theory. In VRP, a distributor must service

outlying customers from the distributor’s depots with a finite number of vehicles. The

distributor and its customers are connected in a network by arcs with some nonnegative

cost imposed on each vehicle traversing an arc. In its simplest form, the mathematical

formulation of a VRP is an integer program that sums the costs of dispatching a vehicle to

service each costumer. This cost summation is subject the constraint of having enough

vehicles to serve all customers (Laporte 1992). Study of the VRP and its derivatives has

produced several models with unique features and includes both exact and heuristic

algorithms (Yuen et al. 2008). The complexity and size of modern distribution problems

have contributed to wide employment of heuristic algorithms in time-sensitive VRP

applications like those experienced by modern delivery services.

United Parcel Service (UPS) recently received recognition for its work on the VRP

by employing a heuristic algorithm to optimize its daily package delivery services. UPS is

one of the largest private delivery companies worldwide, making its VRP instances very

large and complex and its associated operating costs very expensive (INFORMS 2016).

UPS developed the On-Road Integrated Optimization and Navigation (ORION) system to

minimize its delivery costs. ORION employs clustering techniques to partition customers

14

into clusters of nodes easily serviced sequentially along the driver’s route (INFORMS

2016). ORION also accounts for time-sensitive considerations such as business hours for

commercial customers and heavy traffic times along a driver’s prospective routes. These

features of ORION’s heuristic algorithm balance the length/cost of the route with the

requirement of satisfying a customer’s delivery schedule times. ORION even enables

drivers to alter their rough-cut routes and schedules based on human knowledge of current

route conditions not accounted for by the algorithm. In 2016, members of UPS’s OR

department received the Franz Edelman Award for their work on the VRP (INFORMS

2016).

C. NETWORK THEORY APPLIED TO MILITARY LOGISTICS MODELS

As demonstrated by the prevalence of network theory research in civilian

applications, it is unsurprising that there are many military applications of network theory

concerning logistics problems. This trend emerged as the technological advances of the

industrial revolution were quickly applied to military purposes in the latter half of the

nineteenth century. Growing populations, increased production of war materials, and more

powerful central governments resulted in warfare transitioning from a limited activity

conducted by relatively small militaries to a truly industrial-scale activity. As demonstrated

by the robust, detailed mobilization and deployment plans developed by each belligerent

prior to the First World War, the optimization of transportation networks soon became a

matter of national survival. The shortcomings of each belligerent’s August 1914

mobilization and deployment schemes further motivated the need for more quantitative and

rigorous methods for evaluating transportation networks.

One of the most famous examples of military research concerning network theory

was an American study of the Soviet rail network during the Cold War. In 1954, RAND

scientists Ford and Fulkerson initiated research on the maximum flow, minimum capacity

cut problem with their paper “Maximal Flow through a Network” (Ford and Fulkerson

1954). This work was followed in 1955 by a then classified RAND Report by T.E. Harris

and F.S. Ross. This report, “Fundamentals of a Method for Evaluation Rail Net Capacities”

(Harris and Ross 1955), concerned interdicting the flow of troops and material along Soviet

15

railways during wartime. While the focus of this research is not interdiction, the work of

Ford, Fulkerson, Harris, and Ross is foundational in the field of network theory. The

methods pioneered by these researchers underpin much of modern network theory and have

enabled much progress in modern network theory and its applications.

NPS has produced many notable examples of logistics optimization research

pertaining to transportation and distribution applications. Since NPS is first and foremost

a center for naval research, there is a large volume of readily obtainable research regarding

transportation and distribution networks supporting amphibious operations. Peter Ward

created the Ship-to-Shore Transportation Problem (SSTP) in 2008 as a means of optimizing

the employment of connectors in support of humanitarian aid and disaster relief (HA/DR)

operations. Ward formulated SSTP as a mixed-integer optimization model implemented

with its associated optimization tool in Xpress-MP (Ward 2008). While Ward’s research is

limited to a transportation network built around the T-HA class of hospital ship (USNS

Comfort and Mercy), it is useful in that it contains methods for weighting different types

of patients based on priority for evacuation. Ward’s work also accounts for the

heterogenous mixture of connectors available during amphibious operations and the

varying capabilities of different types, models, and series of connectors.

In 2017, Major Robert Christafore continued research into distribution networks

during amphibious operations with his study of bulk fuel distribution from ship to shore in

support of Marine Expeditionary Units (MEU). Christafore developed a layered analytical

planning tool, the MEU Amphibious Connector Scheduler (MCAS), for use by Navy and

Marine Corps planners. MCAS is a multi-model analytical tool that employs a linear

program to satisfy fuel demands of nodes ashore then inputs the results of this linear

program into an assignment heuristic algorithm that assigns volumes of bulk fuel to a

specific connector (Christafore 2017). MCAS then uses another linear program to schedule

the arrival and departure of connectors with their embarked quantities of fuel. MCAS is

noteworthy because the interaction of the assignment heuristic inputting shipments of fuel

into the scheduler linear program dramatically decreases the computational difficulty of

this problem. Without an assignment heuristic, this problem could have become intractable

16

and required a binary mixed integer assignment program with much longer runtime and

associated complexity (Christafore 2017).

Major Matthew Danielson expanded the application of MCAS in 2018 to include

other critical warfighting commodities, such as water and ammunition. Danielson’s

improvements on MCAS resulted in a temporal network flow model that optimizes round

trips made by connectors from ship to shore (Danielson 2018). Another useful feature

incorporated by Danielson was that his methodology generated several schedules with

varying attributes allowing decision makers to select the distribution schedule most

appropriate for operations ashore.

As stated in Chapter I, this thesis seeks to improve the S-MIP model developed by

Lieutenant Colonel Freeman in 2019. In 2021, Captain Forest Sentinella applied design of

experiment (DOE) techniques and data farming methods to analyze S-MIP for possible

means of improving its solution quality and runtime (Sentinella 2021). Captain Sentinella’s

work largely focused on evaluating the advantages of using a single solve methodology

versus a rolling horizon solve strategy during S-MIP runs. The single solve strategy has

the disadvantage of a prohibitively large number of variables as the model attempts to solve

all its component pieces simultaneously. Conversely, the rolling horizon strategy breaks

the optimization problem into smaller component pieces and solves them sequentially,

keeping previously solved for variables fixed (Sentinella 2021). Albeit with less optimal

solutions, Captain Sentinella’s efforts dramatically improved S-MIP’s run time as

demonstrated by a rolling horizon solution run time of 44.97 hours versus a single solve

solution run time of 232.56 hours for the same problem inputs (Sentinella 2021).

The results of Captain Sentinella’s research demonstrated that further

improvements were required for S-MIP before it could be applied to large-scale force

deployment problems. These results inspired the decision to experiment with the path

enumeration (PE) techniques used in this thesis. PE is a means of exploring networks by

explicitly defining every unique route or “path” that can be followed from source to

destination within a network. PE techniques were successfully employed during Operation

Iraqi Freedom and Enduring Freedom (OIF/OEF) to optimization distribution of

sustainment in a contested environment.

17

In 2005, the rampant insurgent use of improvised explosive devices (IEDs) was

inflicting an unacceptable number of casualties on logistics convoys supporting operations

in Iraq and Afghanistan. The U.S. Central Command (CENTCOM) commander issued

guidance that as much sustainment as possible should be airlifted to minimize the number

of ground convoys exposed to IED attack. Since airlifting personnel and supplies is far

more expensive than ground transportation, some type of optimization was required to

make this new logistics paradigm feasible. Dr. Gerald Brown, Dr. Matthew Carlyle, and

Dr. Robert Dell of the NPS OR Department, along with Mr. John Brau of U.S.

Transportation Command (TRANSCOM), developed the Air Tasking and Efficiency

Model (ATEM) to improve CENTCOM’s air distribution network. ATEM optimized intra-

theater lift in CENTCOM using an easily deployable tool written in Microsoft’s Visual

Basic with a Microsoft Excel user interface. ATEM modeled Iraq and Afghanistan as a

network of airfields connected by the flightpaths flown by various military airlift platforms.

Employing a PE heuristic, ATEM provides route guidance for aircraft schedulers to

maximize the throughput of their aircraft tasking in support of theater-wide sustainment

(Brown, et. al. 2011). Initially fielded in 2006 and incrementally improved upon, ATEM

both improved the fiscal cost of sustaining CENTOM’s air distribution network and

reduced the number of ground convoys exposed to enemy attack in CENTCOM.

18

THIS PAGE INTENTIONALLY LEFT BLANK

19

III. MODEL FORMULATION AND RELATED MODELS

This chapter describes two formulations of our path-enumeration-based mixed

integer program, PE-MIP. The initial formulation of PE-MIP, PE-MIPv1, is described in

Section A. PE-MIPv2, a reformulated version of PE-MIPv1, is defined in Section B. The

generic name PE-MIP is used when referring to attributes common to both PE-MIPv1 and

PE-MIPv2. PE-MIP’s required inputs and PE-MIP’s relationship with the S-MIP model are

also discussed in this chapter.

A. INITIAL PE-MIP MODEL FORMULATION (PE-MIPV1)

In July 2021, Dr. Emily Craparo and Dr. Matthew Carlyle of the NPS OR Department

reformulated Lieutenant Colonel Freeman’s S-MIP model as a PE-based approximation with

the intent of improving S-MIP’s solve time and the quality of the resulting solution. Like

Lieutenant Colonel Freeman’s original model, this reformulation was designed to optimize

the delivery of equipment and personnel from source locations to initial operating positions

in support of EABO. The resultant reformulation, PE-MIP, and the original S-MIP are based

on network theory and the concept that transportation and distribution networks can be

represented by directed networks. In a directed network, locations are known as nodes, and

the connections between nodes are referred to as arcs, which are ordered pairs of direct

distinct nodes (Estrada et al. 2015). Directed networks differ from other networks or graphs

in that a directed network is a directed graph whose nodes and/or arcs have associated

numerical values (Estrada et al. 2015). These numerical values are typically costs, capacities,

and/or supplies and demands within the network. A simple directed network is shown in

Figure 3.

The structure of a directed network can be easily applied to real-world distribution

networks by modeling depots or other logistic sites as nodes and the routes connecting them

as arcs. It is important to note that physical proximity in a network does imply connectivity

in a directed network. For example, in Figure 4 nodes D and E are physically close to one

another on the map, but within the network one cannot reach node D from E and vice versa

directly. Instead, one must traverse several nodes and arcs to reach D from E.

20

Figure 3. A simple example of a directed network. Bolded arcs depict the
minimum cost path from node 1 to node 4.

Directed networks are also useful for modeling the natural effects of the world on

distribution operations. For example, omitting arcs between nodes can account for physical

phenomenon such as impassable reefs that bar nautical transit or other impassable terrain.

This approach is on display in Figure 4 where despite the physical proximity of nodes D and

E, the nodes are unconnected due to the reefs separating these nodes on their separate islands.

21

Figure 4. A simple example of a directed network overlaid on the Spratly

Islands with nodes depicted in orange and arcs in green. Arc costs and
capacities are omitted.

Personnel and equipment traversing the directed networks modeled by S-MIP and

PE-MIP are packaged together as serials at their source node and travel together as a

cohesive entity. Optimal serials are made automatically by the model using a heuristic

algorithm or input by the user as will be discussed in Part B of this chapter. PE-MIP differs

from S-MIP in that PE-MIP restricts the number of solutions available to the model to only

those paths generated by the path enumeration code. This restriction reduces the feasible

solutions available to PE-MIP, thus reducing the overall computational difficulty

associated with solving the underlying optimization problem. PE-MIP’s reduction in

feasible solutions can result in less optimal objective function values, but with the gained

benefit of much faster solution times. Therefore, given a limited model run time PE-MIP

could produce a solution within specified optimality parameters whilst S-MIP continues

working towards producing a better result in the given time limit. The following section

22

provides the complete formulation of PE-MIPv1 (which is a reformulation of Lieutenant

Colonel Freeman’s S-MIP) in its component sets, indices, data, decision variables,

objective function, and constraints.

Key to our path-enumeration based formulation is a finite list of directed paths for

serials to follow. Serials are assigned to these paths, and connectors are assigned to cover

specific arcs along these paths to ensure the serials are delivered to their destinations. The

arcs in each path p PATHS∈ are given by the tuples (i, j, p’) the set PARCS that have p’ =

p, and each element (s, p) in the set SPATHS indicates that serial s can travel along path p.

Inclusion in the set SPATHS is based on whether path p starts and ends at the starting point

and destination for serial s. Figure 5 depicts the full formulation of PE-MIPv1.

1. Sets and Indices

v CXRS∈ connectors

 s EQUIP∈ serials
 p PATHS∈ paths for serials
 ,i j NODES∈ nodes/locations
 (),i j ARCS∈ arcs

 k LEGS∈ ordinal indices for connector legs (first leg, second leg, etc.)
 (),v k CLEGS∈ connector v executes at least k legs

(), ,v i j TRIPS∈ connector v can travel on arc (i, j)

 (), , , _v k i j S TRIPS∈ connector transits

 (), , , ,s v k i j LOADS∈ connector-serial transits

 (),s p SPATHS∈ serial s can travel path p

 (), ,i j p PARCS∈ path p contains arc (i, j)

2. Data [units]

vh usable deck area for connector v [sq.ft]

 sv value/priority weight for serial s

sa deck footprint size of serial s [sq.ft]

, ,v i jt time required for connector v to make transit (i, j) [days]

23

LAYOVER time cost for connector to enter/leave nodes [days]
BIG “infinite” = |LEGS| * (max(tv,i,j) + LAYOVER) * 10
MAXLOOPS the limit for iterative time windows allowed for the model
STEP = 1,2,...,MAXLOOPS; the current successive time window

se terminal/ending location (node) for serial s

3. Decision Variables [units]

,s pPATH = 1 if serial s is assigned to path p; else 0

sP = 1 if serial s not delivered to destination; else 0

 , , ,v k i jX = 1 if cxr v makes transit (i, j) on leg k; else 0

, , , ,s v k i jY = 1 if serial s loaded for transit (v,k,i,j); else 0

,v kW time >= 0 at which cxr v completes leg k [days]

 ,s iZ time >= 0 at which serial s arrives at node i [days]

24

4. Formulation

Figure 5. Initial PE-MIP formulation with objective function and constraints.

Constraint (C1) states that each serial s should either be assigned to one of its possible
paths or marked as unassigned, and therefore undelivered.

Constraint (C2) states that for each arc (i, j) along the path to which serial s is assigned, the
serial must be carried by some connector along that arc.

Constraint (C3) states that the total deck space of serials being delivered by vessel v on leg
k from i to j cannot exceed hv.

Constraint (C4) states that a connector must be assigned to at most one arc (i,j) per leg k.

Constraint (C5) states that vessel v can only make transit (i,j) on leg k if it also made a
transit to i on leg k – 1.

25

Constraint (C6) states that the leg-k completion time of vessel v Wv,k is not less than the
leg-k – 1 completion time of that connector, plus the transit time of the kth leg (and
associated layover).

Constraint (C7) states that the arrival time of serial s at j Zs,j is not less than the vessel v
leg-transit (k,i,j) completion time Wv,k + LAYOVER, or zero for all trips (v,k,i,j) on which
serial s does not arrive.

Constraint (C8) states that the k leg-completion time of vessel v Wv,k is not less than the
transit time tv,i,j plus the arrival time Zs,i for any cargo loaded from i to j, or zero for cargo
not loaded.

Constraints (C9) and (C10) define decision variable domains.

B. PE-MIP REFORMULATION (PE-MIPV2)

During experimentation it was discovered that the initial formulation PE-MIPv1

has trouble determining feasible solutions of reasonable quality within an acceptable

amount of time. The lackluster performance of PE-MIPv1 can be attributed to its

constraints (C7) and (C8); these constraints cause significant difficulty for the solver as it

attempts to close the optimality gap to the desired tolerance. The results returned by PE-

MIPv1 caused the research team to explore a reformulation of PE-MIPv1 featuring a new

objective function, new constraints, and a new method of calculating the penalty parameter

BIG.

This reformulation of PE-MIPv1, hereafter referred to as PE-MIPv2, possesses

several advantages over PE-MIPv1. The new method of calculating BIG improves the

performance of (C7) and (C8) mitigating some of the difficulty encountered with these

constraints in PE-MIPv1. The new constraints (C9) – (C11) establish valid lower bounds

for the variable obj
sZ which enhanced the efficiency of the first term of PE-MIPv2’s

objective function. Finally, in conjunction with the previously described changes, PE-

MIPv2’s objective function allows for the meaningful use of an absolute optimality gap

termination criterion based on delivery of all serials. The results returned by PE-MIPv2

will be examined at length in Chapters IV and V. Figure 6 depicts the full formulation of

PE-MIPv2.

26

1. Sets and Indices

The reformulation of PE-MIPv2 did not result in any changes to the sets and indices

previously described in this chapter concerning PE-MIPv1.

2. Data [units]

vh usable deck area for cxr v [sq.ft]

sv value/priority weight for serial s

sa deck footprint size of serial s [sq.ft]

, ,v i jt time req’d for cxr v to make transit (i, j) [days]
LAYOVER time cost for cxrs to enter/leave nodes [days]
maxhopss maximum number of nodes visited by serial s on any path
best_possible_times,p fastest transit time possible for serial s along path p,

excluding layovers
fastest_times fastest transit time possible along any of serial s’s potential

paths, excluding layovers
BIG ()()2 2 _s s

s
LAYOVER maxhops fastest time− +∑

se terminal/ending location (node) for serial s

3. Decision Variables [units]

,s pPATH =1 if serial s is assigned to path p; else 0

sP =1 if serial s not delivered to destination; else 0

, , ,v k i jX =1 if cxr v makes transit (i, j) on leg k; else 0

, , , ,s v k i jY =1 if serial s loaded for transit (v,k,i,j); else 0

,v kW time>=0 at which cxr v completes leg k [days]

,s iZ time>=0 at which serial s arrives at node i [days]
obj
sZ objective penalty for serial s [days]

27

4. Formulation

Figure 6. PE-MIPv2 Formulation with objective function and constraints.

Constraint (C1) states that each serial s should either be assigned to one of its possible
paths or marked as unassigned.

Constraint (C2) states for each arc (i, j) along the path to which serial s is assigned, the
serial must be carried by some connector along that arc.

Constraint (C3) states that the total deck space of serials being delivered by vessel v on leg
k from i to j cannot exceed hv.

Constraint (C4) states that a connector must be assigned to at most one arc (i,j) per leg k.

28

Constraint (C5) states that vessel v can only make transit (i,j) on leg k if it also made a
transit to i on leg k-1.

Constraint (C6) states that the k leg-completion time of vessel v Wv,k is not less than the k-
1 leg-completion time of that connector, plus the transit time of the kth leg (and associated
layover).

Constraint (C7) states that the arrival time of serial s at j Zs,j is not less than the vessel v
leg-transit (k,i,j) completion time Wv,k + LAYOVER, or zero for all trips (v,k,i,j) on which
serial s does not arrive.

Constraint (C8) states that the k leg-completion time of vessel v Wv,k is not less than the
transit time tv,i,j plus the arrival time Zs,i for any cargo loaded from i to j, or zero for cargo
not loaded.

Constraints (C9’)-(C11) establish valid lower bounds on the variable used to penalize
delivery time in the objective function.

Constraints (C12) and (C13) define decision variable domains.

C. PE-MIP AND S-MIP COMPARISON

PE-MIP and its antecedent model S-MIP share many similar attributes and features.

The two models primarily differ in their objective functions. As shown by Figure 7, S-

MIP’s objective function uses the summation of three terms taking into consideration the

following factors: delivery along the shortest-path distance for each serial (first term), serial

delivery time by serial value/priority (second term), and a penalty for undelivered serials

(third term).

Figure 7. S-MIP objective function.

S-MIP’s formulation uses its objective function and twelve associated constraints to plan

transits for connectors that get serials as close to each serial’s destination as possible. S-

MIP’s constraints are used to enforce real world phenomenon like continuity of connector/

29

serial movement, connector capacities, calculating time events occur, and recording serial

delivers. Unlike S-MIP, PE-MIP makes no consideration in its objective function for the

actual shortest-path for serial delivery. Instead, the fastest paths for serial delivery are down

selected through various filters in PE-MIP’s path enumeration code. These filtering

methods are covered in greater detail in Chapter IV. Furthermore, S-MIP’s formulation

makes no consideration for path like data structures that are found in PE-MIP. Instead, S-

MIP focuses on making decisions in a piecewise manner concerning each leg of a serial’s

journey from source to destination. The full formulation of S-MIP is found in Appendix B:

S-MIP Connector Model Formulation.

D. PE-MIP INPUT DATA

Lieutenant Colonel Freeman designed the original S-MIP model to receive its input

data from an Excel workbook. PE-MIP retains this feature of S-MIP and receives its inputs

via an Excel workbook. Within the Excel workbook the data inputs are organized into six

worksheets: WhatWhere, InputSerials, HowFar, HowFast, ConnectorData, and

ExperimentDesign. (See Appendix A: ConnectorFarmer Manual (V0.17) (Upton 2021)).

The worksheets InputSerials and HowFast are new additions to PE-MIP’s inputs that were

not featured in the original S-MIP inputs. As will be discussed, InputSerials and

WhatWhere are two mutually exclusive worksheets that cannot be used in conjunction with

one another. The following sections of this chapter discuss in detail the organization and

data contained within the six input worksheets. Table 1 contains a summary of each

worksheet and its associated data inputs and variables.

30

Table 1. Summary of input data specified via the Excel workbook if not
using user specified input serials. Variables in red text indicate minimal
requirements for the model to run. Adapted from Freeman (2019) and

Sentinella (2021).

1. WhatWhere

WhatWhere is the input worksheet concerning which personnel and what

equipment goes from each source location to its assigned initial operating positions via a

designated ship-to-shore site (StS). Each row of this worksheet represents personnel and

equipment organized as modular “sticks” that can be formed by the model into serials for

assignment to connectors and movement through the network. The model does not require

every input column on the worksheet WhatWhere to run. Some columns are included for

additional insight and situational awareness on the part of the user to understand what

equipment and which personnel are assigned to each connector. The TACMN column is

an example of a column included to improve the user interface but not required for the

model to run. TACMN, or Table of Authorized Control Number, is a standardized

administrative alphanumeric designator used to describe the many types of equipment in

military service. For example, B2605 denotes a tactical water purification system, while

E0947 denotes a light armored vehicle with a 25mm autocannon. Site, Lat/Long,

ShiptoShore Lat/Long, Serial description, and Weight are other columns not required by

the model but included in WhatWhere because they are useful for the user’s situational

awareness. As shown in Figure 8, PE-MIP requires the following columns from

31

WhatWhere: StS Site, initial operating position (IOP), Source, Length, Width, and Stick

Value.

Figure 8. A screen grab of a simple WhatWhere worksheet, best viewed in

color to denote required versus not required columns. Adapted from
Freeman (2019) and Sentinella (2021).

2. InputSerials

If users do not want the model to create serials via a heuristic algorithm, they have

the option of inputting their own prebuilt serials via the worksheet InputSerials.

Survivability of critical assets, equipment and operators pairing, and other equipment

pairing considerations are all operational reasons why a user could want to build their own

serials rather than allow the model to form serials for the user. For example, a user might

not want every item of a specific type of critical equipment to move on the same connector

in case that connector is intercepted and destroyed by the enemy or lost via an accident.

Additionally, specifically trained personnel—e.g., a driver qualified to move a specific type

of vehicle on/off a connector—often need to travel with their equipment to facilitate

embarkation and debarkation of that equipment. InputSerials has the same columns as

WhatWhere, but each row represents a serial in its entirety rather than a modular stick.

Figure 9 depicts a sample of InputSerials with required variables in red.

Figure 9. A screen grab of a simple InputSerials worksheet, best viewed in

color to denote required versus not required columns. Adapted from
Freeman (2019) and Sentinella (2021).

32

3. HowFar

The HowFar worksheet contains two separate categories of input information:

connector access and a distance matrix. The connector access portion includes a row for

each StS Site and a column for each connector type. The connector access row and column

entry for each StS Site and connector type contains a TRUE or FALSE entry denoting

whether a specific connector type can land/dock at a specific StS Site. For example, if a

connector access row and column entry for a KC130 at StS Site A reads TRUE, then that

means that StS Site A has a landing strip capable of accommodating a KC130 aircraft. The

distance matrix portion of HowFar defines the physical distances (in nautical miles)

between node pairs in the directed network. Blank entries signify that no connector can

travel between the nodes specified by the row and column name.

Figure 10. A screen grab of a simple HowFar worksheet, best viewed in color.

Connector access appears on the right side of this sheet and the distance
matrix on the left side. Adapted from Freeman (2019) and Sentinella

(2021).

4. HowFast

In the context of EABO, personnel and equipment are not usually directly delivered

to the exact position where they will operate. Instead, personnel and equipment will need

to move from the StS Site they debark from to a new position where they will fulfill their

operational function. For example, a radar system or anti-ship missile system will normally

move away from the beach, pier, or airfield where it is offloaded from a connector to a

different location where it will set up and operate. The HowFast worksheet inputs this

additional movement time information to capture when a serial can expect to arrive at its

true destination after exiting the connector network.

33

5. ConnectorData

The ConnectorData worksheet encompasses data about the attributes of each

connector type. The attribute data for each connector type includes the following: the

square footage available on the connector to carry equipment, the broken stow factor, the

usable square footage, and sustained speed under sea states 1–4. The broken stow factor is

the proportion of the connector’s square footage that can be used to transport serials. It

follows that usable square footage (= square footage × broken stow factor) (Sentinella,

2021). Sea state is a categorical variable used to define the ocean’s surface conditions due

to wind, currents, and wave heights. Sea states exceeding sea state 4 preclude safe surface

connector operations and are therefore excluded from consideration in this model.

Figure 11. A screen grab of a simple ConnectorData worksheet, best viewed

in color. Adapted from Freeman (2019) and Sentinella (2021).

6. ExperimentDesign

The ExperimentDesign worksheet allows users to define serval different cases with

different conditions which the model can run. This feature is included so that users can

compare how natural phenomena like sea state conditions and operational realities like the

quantity available of different types of connectors affect serial deliveries. Each of these

conditions is captured as a design point, with each row of this worksheet corresponding to

a different design point. Minimum required inputs for the model are found under the

columns Design Point (DP), Connector Type Quantities, SeaState, FASTPATH,

HOPS_ADD, HOPS_COEF, and USE_ABSMIPGAP.

Figure 12. A screen grab of a simple ExperimentDesign worksheet, best

viewed in color. Adapted from Freeman (2019) and Sentinella (2021).

34

THIS PAGE INTENTIONALLY LEFT BLANK

35

IV. EXPERIMENTATION

This chapter covers the experiments performed on PE-MIP and S-MIP, the design

of experiments, the software used to implement the experiments, methods used to capture

the results of experiments, and the techniques used to conduct post-experiment analysis.

This chapter also discusses the metrics of interest used to analyze solution quality, model

run time, and other insights discovered by this research’s experiments.

A. SOFTWARE

PE-MIP is implemented using Python’s Pyomo package, an open-source

optimization modeling language. All experiments used the academic version of IBM’s

CPLEX Optimization Studio (IBM 2006) as the model’s solver. Every experiment was

conducted using ConnectorFarmer (v0.17), a software package developed by Stephen

Upton of the Simulation Experiments and Experimental Design (SEED) Center, More

information on the SEED Center at https://nps.edu/web/seed/. ConnectorFarmer is a data

farming wrapper composed of several Python scripts built to run and extract results from

S-MIP. ConnectorFarmer has been incrementally improved and modified as S-MIP has

changed during experimentation by OAD and NPS students. In her thesis work, Captain

Forest Sentinella used ConnectorFarmer (v0.14) while studying rolling horizon and DOE

effects on S-MIP (Sentinella 2021). ConnectorFarmer executes experimentation using S-

MIP and PE-MIP with two primary Python scripts: ConnectorRunner and ConnectorMiner.

ConnectorRunner facilitates the actual running of models on computing clusters while

ConnectorMiner enables post-experiment analysis. ConnectorMiner collects and calculates

several summary metrics from each experiment and then outputs these metrics to an easily

digestible Excel workbook for review. ConnectorMiner can also produce several charts and

graphs to help analysts visually interpret how models are performing and identify

potentially problematic or nondeterministic behavior in each experiment.

ConnectorFarmer is an ideal wrapper for conducting high-level, computationally expensive

experiments because it can run several instances of a model on different cores of the same

computer concurrently. The research team used this feature of ConnectorFarmer while

36

executing experiments on NPS’s high-performance computing clusters Hamming and

Reaper. Additional information about ConnectorFarmer is available in Appendix C, the

Connector Farmer User Manual (v0.17).

B. DESIGN OF EXPERIMENTS

The research team designed initial experiments to answer specific question about

the model and aid in debugging nondeterministic model behavior. Later experiments

employed full factorial designs of experiment (DOE) to explore the effect of varying

different model parameters.

C. INITIAL EXPERIMENTS AND PE-MIP DEVELOPMENT

This section provides a cursory summary of PE-MIP’s development. Appendix B:

PE-MIP Development provides a full narrative and detailed description of PE-MIP’s

formulation and incremental evolution from December 2021 through early March 2022.

The research team began preliminary experiments with S-MIP and PE-MIPv1 in early

December 2021. These early experiments focused on debugging the code associated with

PE-MIPv1 and comparing PE-MIPv1 and S-MIP’s performance with small scale problem

instances. PE-MIP’s solution quality and runtime were roughly equivalent to those returned

by S-MIP during these opening experiments. Success with small scale problem instances

motivated the progression to experimentation with large problem instances of more utility

to the research sponsor.

1. Description of the Two MLR Deployment Problem

For large-scale experiments, the research team used inputs from OAD representing

the deployment of two MLRs (4th MLR and 12th MLR) from their home stations to initial

operating positions. The Marine Corps will ultimately have three MLRs permanently

stationed in the Western Pacific. However, the scenario used by OAD to create inputs for

this research featured 3d MLR already deployed to its initial operating positions due to

regular bilateral military exercises. Therefore, the scenario used for these experiments only

required the deployment of two MLRs at the beginning of a conflict.

37

The research team used the same input data provided by OAD for all large-scale

experiments and these inputs will for the remainder of the thesis be referred to as the two

MLR deployment problem. The input serials, types, and quantities of connectors available

for the two MLR deployment were informed by an OAD working group that had previously

evaluated and quantified what the deployment of two MLRs would entail. The two MLR

deployment problem input includes 472 serials comprising 173,443.3 square feet of

equipment requiring deployment. Connector quantities and types for the two MLR

deployment problem were based around a U.S. Navy force structure assumption that nine

Light Amphibious Warships (LAW) will be procured to habitually support each MLR.

Therefore, 27 total LAWs would be available to support sealift operations in the Western

Pacific not accounting for ship maintenance or other unavailability. Two high speed surface

ships were also assumed as available due to current big deck fast transit ship inventories.

Aircraft connector availability was driven by the assumption of four squadrons of KC-

130Js, two squadrons of MV-22Bs, a limited number of serviceable CH-53Ks, and no joint

heavy airlift assets, i.e., U.S. Air Force C-17s or C-5s.

All network data in the input files used by the research team is notional and

nondescriptive of any real-world operational plan. In other words, the nodes within the

input file’s network do not represent any planned EAB sites nor should these nodes be

thought of as exactly corresponding to any real-world locations in the Western Pacific or

elsewhere. Instead, the 17 nodes in the network and their associated arcs lengths and

connector access values are informed by real world data obfuscated to provide a useful

approximation of the operating environment for unclassified experimentation.

2. Computational Difficulty and Large-Scale Experiments with PE-
MIPv1 and S-MIP

Introductory experiments with larger scale problem instances indicated that PE-

MIP suffered from the same computational difficulty problems and associated long model

runtimes that had inhibited the practical application of S-MIP in support of the research

sponsor’s objectives. During these initial experiments, the research team identified that the

path enumeration techniques used by PE-MIPv1 worked very quickly and efficiently.

However, the sheer number of paths enumerated by PE-MIPv1 created a substantial

38

amount of complexity within the model which degraded its performance. The two MLR

deployment problem’s network includes 10,303 total possible unique paths from the source

nodes to the destination nodes. These 10,303 possible unique paths result in 907,689 total

possible unique serial paths that PE-MIPv1 could consider for its solution. Since many of

these serial paths are nonsensical, or highly inefficient (e.g., visiting the majority of the

nodes in the network when a far shorter path is available), filtering out undesirable and

impracticable serial paths can help scope the possible solutions to only reasonable

candidate serial paths. Therefore, the research team decided to implement a series of filters

on candidate serial paths for the purpose of decreasing PE-MIPv1’s computational by

reducing the number of candidate serial paths considered by the model.

3. Serial Path Filters for Reducing Computational Difficulty

From its inception and earliest formulation PE-MIPv1 has included a serial path

filter that removes candidate serial paths without sufficient capacity for the associated

serial to traverse the path. Initial additional filtering efforts focused on sorting out candidate

serial paths that visited extraneous nodes during the serial’s transit from source to

destination. This path length filter used a modified version of the breadth-first search (BFS)

algorithm to return the length of (in nodes) of the shortest possible path from source to

destination. The length of this array is stored within the code as a local variable

“MINHOPS” which is used to calculate the longest allowable path length “MAXHOPS”

using the following formula: MAXHOPS = HOPS_COEF * MINHOPS + HOPS_ADD.

“HOPS_COEF” and “HOPS_ADD” are user-specified parameters input through the DOE

input to provide flexibility in controlling the maximum allowable path length for different

DPs.

The path length filter applied through MAXHOPS did improve model runtime.

However, as is discussed in Appendix B, these improvements but did not reduce PE-

MIPv1’s overall computational difficulty enough to allow expansive experiments on large

problem instances. The research team decided that an additional filter on candidate serial

paths considering serial transit times could further reduce model runtime. The transit time

filter calculates the total transit time of a serial from source to destination via the fastest

39

available connector capable of traversing a path. The transit time filter is implemented via

the user input parameter “FASTPATH” which allows the user to specify how many

possible serial paths PE-MIPv1 should consider from the remaining serial paths after

filtering for path length. This consideration is implemented in accordance with each serial’s

sorted serial transit times along a serial path. In other words, if the user inputs FASTPATH

= 1, then only the serial path with the fastest transit time for that serial (from among those

paths remaining following the MAXHOPS filter) is considered for a solution, whereas

when FASTPATH = 2, PE-MIPv1 will consider both the fastest and second fastest serial

path. Like the path length filter before it, the transit time filter improved PE-MIPv1’s

runtime, but not to the degree required for applying PE-MIPv1 in support of OAD’s

requirements. The only modest improvements achieved by the path length and transit time

filters resulted in exploring a reformulation of PE-MIPv1; this reformulation ultimately

produced PE-MIPv2. This decision is described in detail in Chapter III, Section B. PE-

MIPv2 inherited from PE-MIPv1 all the serial path filtering methods described in the

preceding chapters.

The reformulation of PE-MIPv1 into PE-MIPv2 immediately returned promising

results. Given simple inputs for MAXK, FASTPATH, and HOPS_ADD, PE-MIPv2

returned results in a small fraction of the time required with its previous formulation by

PE-MIPv1. This dramatic improvement in model runtime motivated the research team to

initiate the final set of comprehensive experiments described in the following sections of

this chapter.

D. FINAL EXPERIMENTS

1. Design of Final Experiment

The final experiment revisited the same two MLR deployment problem previously

explored during initial experimentation. For the final experiment the research team decided

upon a full factorial DOE varying the input variables MAXK, HOPS_ADD, FASTPATH,

and USE_ABSMIPGAP. Table 2 depicts the values of the different levels used for each

input variable for this DOE.

40

Table 2. Input variable levels used for final full factorial DOE

MAXK HOPS_ADD FASTPATH USE_ABSMIPGAP Time Limit
(hours)

5, 10, 15 0, 1 1, 2 0, 1 (binary) 24, 48, 72

This full factorial DOE yielded 72 total possible DPs. This final experiment was

executed in batches by time limit value starting with DPs using a 24-hour time limit. This

method provided considerable efficiency since many of the 72 DPs are duplicates with the

only difference being the time limit used. This allowed the researchers to avoid redundant

or wasted effort repeating the same deterministic experiment with a larger time limit value

for a DP that would produce a known output. Minor variations for identical DPs can occur

in model outputs due to the parallel execution of DPs within the high-performance

computing clusters used during this research. However, the research team determined that

this small variance was acceptable and did not justify the time cost of repeating otherwise

identical DPs. Input variables for the number/types of connectors used, sea state conditions,

VARLIM, etc., remained fixed for all DPs.

All DPs using a relative optimality gap used a MIP GAP tolerance of 20% while

those using an absolute optimality gap termination criterion used the specified value of

BIG / 2. Per Chapter III, Section D, BIG is each DP’s surrogate value for infinity and

represents the latest possible time a serial could be delivered. BIG is used to penalize

undelivered serials in the objective function using the binary variable Ps which denotes

delivery of serials when Ps = 0 . Therefore, if all serials are delivered, PE-MIPv2’s objective

function quickly approaches a value less than BIG / 2, causing the DP to terminate. The

final round of experiments began on 19 March 22 with the first batch of 24-hour DPs.

2. Final Experiment Results

On 14 April 2022 the research team received the results from the full factorial

experiment that began on 19 March 2022. These results included output metrics for 53 of

the 72 DPs in the full factorial DOE. Due to the batch process used to prevent duplication

of DPs that had previously returned integer optimal solutions within tolerance a total of 18

41

DPs were not executed. For each of these 18 DPs, another DPs with an identical

combination of factors, but a lower time limit, had already returned an integer optimal

solution within tolerance. Table 3 summarizes the 18 DPs that were not run due to an

acceptable solution having already been achieved with a lower time limit.

Table 3. Summary of DPs that were not executed or did not record results
during the final experiment

DPs MAXK HOPS_ADD FASTPATH USE_ABSMIPGAP Time Limit
(hours)

13, 25 5 0 1 1 48, 72
14, 26 10 0 1 1 48, 72
15, 27 15 0 1 1 48, 72
16, 28 5 0 2 1 48, 72
17, 29 10 0 2 1 48, 72
18, 30 15 0 2 1 48, 72
19, 31 5 1 1 1 48, 72
22, 34 5 1 2 1 48, 72
32 10 1 1 1 72
33 15 1 1 1 72

Of the 24 unique DPs with 24-hour time limits, 16 DPs delivered all serials. Of the

16 DPs that delivered all serials, eight returned integer optimal solutions within tolerance.

Every DP that returned an integer optimal solution within tolerance inside of 24 hours used

the absolute optimality gap as its termination criteria. Table 4 summarizes the pertinent DP

factors and output metrics for those DPs that returned integer optimal solutions within in

24 hours or less. It must be stated that the time the last serial is delivered is itself not an

optimized model output. The time the last serial is delivered is instead a byproduct of each

individual serial’s optimized delivery time. The net result is that the minimized serial

delivery times of each individual serial results in a lower time to deliver all serials which

is recorded and returned as a model output.

42

Table 4. Summary of DPs that returned integer optimal solutions within
tolerance in 24 hours or less.

DP MAXK FAST-
PATHS

HOPS-
ADD

USE
ABS
MIP
GAP

Prop.
Serials
Del

Time
last serial
delivered
(days)

Obj.
function
value

Sol.
time
(hours)

MIP
GAP
(%)

1 5 1 0 1 1 43 11.32 3.34 93.26
2 10 1 0 1 1 64.7 14.12 3.04 94.6
3 15 1 0 1 1 91.9 25.1 4.84 96.96
4 5 2 0 1 1 43 11.32 1.81 93.26
5 10 2 0 1 1 64.7 14.12 2.83 94.6
6 15 2 0 1 1 87.7 26.11 4.69 97.08
7 5 1 1 1 1 46.4 15.17 1.22 94.97
10 5 2 1 1 1 52.35 17.04 15.03 95.52

The solution times for the DPs in Table 4 represent dramatic improvement compared to the

solution times returned by S-MIP for the same two MLR deployment problem. It is also

noteworthy that the outputs of these DPs indicate that PE-MIPv2 yields better results in

terms of time to deliver serials with smaller MAXK values. This trend is demonstrated by

DPs 1, 4, and 7 which returned the fastest serial delivery times. Conversely, DPs 3 and 6

returned the slowest times to deliver all serials with MAXK = 15. The relationship between

MAXK and the quality of PE-MIPv2’s solution is more thoroughly discussed in Chapter

V, Section B.

The DPs that delivered all their serials but did not return an integer optimal solution

within the 24-hour time limit also revealed interesting insights. Table 5 summarizes the

DPs that delivered all serials but failed to find an integer optimal solution within tolerance

in the 24-hour time limit.

43

Table 5. Summary of DPs that delivered all serials but did not return integer
optimal solutions within tolerance in 24 hours or less.

DP MAXK FAST-
PATHS

HOPS-
ADD

USE
ABS
MIP
GAP

Prop.
Serials
Del

Time
last serial
delivered
(days)

Obj.
function
value

Sol.
time
(hours)

MIP
GAP
(%)

8 10 1 1 1 1 65.7 16.87 24* 95.48
37 5 1 0 0 1 24.4 2.96 24* 74.21
38 10 1 0 0 1 28.4 3.85 24* 80.16
39 15 1 0 0 1 52.5 6.6 24* 88.44
40 5 2 0 0 1 9.8 2.8 24* 72.73
41 10 2 0 0 1 21.2 3.7 24* 79.46
42 15 2 0 0 1 41.4 4.7 24* 83.79
43 5 1 1 0 1 35.65 4.5 24* 78.43

*Denotes a DP that terminated due to exceeding its time limit

The serial delivery time yielded by DP 40 immediately draws attention since this is

the smallest time to deliver all serials for a two MLR problem set returned yet by either S-

MIP, PE-MIPv1, or PE-MIPv2. With factors MAXK=5, ADD_HOPS=0, and FASTPATH

= 2, DP 40 suggests that PE-MIPv2 can return very good solutions when using a limited

number of connector legs and multiple short but fast (in terms of serial transit time) paths

to choose from. DP 40 returned a relative optimality gap of 72.73% and the convergence

rate of a mixed integer program is not guaranteed. Therefore, there is no clear way of

determining whether DP 40 would have reached the specified 20% relative optimality gap

with an additional 24 or 48 hours (or more) of model runtime.

15 total DPs ran with 48-hour time limits. Of these DPs, 13 delivered all serials and

two DPs returned integer optimal solutions within tolerance. Both DPs that returned integer

optimal solutions within tolerance in this batch used an absolute optimality gap for their

termination criteria. Table 6 summarizes the DPs from the 48-hour batch that returned

integer optimal solutions (within tolerance).

44

Table 6. Summary of DPs from the 48-hour time limit batch that returned
integer optimal solutions within tolerance.

DP MAXK FAST-
PATHS

HOPS-
ADD

USE
ABS
MIP
GAP

Prop.
Serials
Del.

Time
last
serial
delivered
(days)

Obj.
function
value

Sol.
time
(hours)

MIP
GAP
(%)

20 10 1 1 1 1 64.60 14.82 12.49 94.85
21 15 1 1 1 1 117.75 25.62 48.1 97.02

DP 20 raises some questions since it returned a solution in ~12.5 hours but its

associated 24-hour time limit DP, DP 8, terminated after exceeding its 24-hour time limit.

DP 8 did not return a memory error. This abnormality could be attributed to the fact that

DP 8 was executed on the Reaper cluster while DP 40 was executed on Hamming.

Hamming and Reaper use different versions of CPLEX, meaning that these machines could

have used dramatically divergent solution paths resulting in very different solution times.

The other 11 DPs that delivered all serials within the 48-hour time limit but did not return

integer optimal solutions all used a relative optimality gap termination criterion. Table 7

summarizes these DPs.

Table 7. Summary of DPs from the 48-hour time limit batch that delivered
all serials but did not return integer optimal solutions within tolerance.

DP MAXK FAST-
PATHS

HOPS-
ADD

USE
ABS
MIP
GAP

Prop.
Serials
Del.

Time
last
serial
delivered
(days)

Obj.
function
value

Sol.
Time
(hours)

MIP
GAP
(%)

49 5 1 0 0 1 9 2.28 48* 60.55
50 10 1 0 0 1 9 2.48 48* 69.26
51 15 1 0 0 1 10.5 2.93 48* 73.99
52 5 2 0 0 1 9 2.35 48* 61.73
53 10 2 0 0 1 9 2.59 48* 70.59
54 15 2 0 0 1 19 2.83 48* 73.01
55 5 1 1 0 1 9.3 2.93 48* 65.33
56 10 1 1 0 1 34.2 4.62 48* 83.48
57 15 1 1 0 1 69.65 7.5 48* 89.82
58 5 2 1 0 1 28.4 4.76 48* 83.19
59 10 2 1 0 1 47.8 8.46 48* 90.98

*Denotes a DP that terminated due to exceeding its time limit

45

The results returned by the DPs in Table 7 also demonstrate the phenomenon

identified in DP 40 that very small times to deliver all serials are possible given the correct

inputs and enough processing time. It is also noteworthy that in DP 58, despite the input

MAXK = 5, the factors FASTPATHS = 2 and HOPS_ADD = 1 result in triple the amount

of time to deliver all serials as the other DPs with MAXK = 5 (DPs 49, 52, 55). The

relationship between the input factor FASTPATH and the time of last serial delivered is

explored in detail in Chapter V, Section B.

13 total DPs were executed during the 72-hour time limit batch of experiments.

None of these 13 DPs returned integer optimal solutions and four DPs did not deliver all

their serials before exceeding the 72-hour time limit. Table 8 summarizes the DPs in the

72-hour batch that delivered all their serials.

Table 8. Summary of DPs from the 72-hour time limit batch that delivered
all serials but did not integer optimal solutions within tolerance.

DP MAXK FAST-
PATHS

HOPS-
ADD

USE
ABS
MIPG
AP

Prop.
Serials
Del.

Time last
serial
delivered
(days)

Obj.
function
value

Sol.
time
(hours)

MIP
GAP
(%)

61 5 1 0 0 1 9 2.39 72* 62.35
62 10 2 0 0 1 9 2.41 72* 68.40
63 15 2 0 0 1 9 2.36 72* 67.65
64 5 2 0 0 1 9 2.34 72* 61.59
65 10 1 0 0 1 9 2.4 72* 68.22
66 15 1 0 0 1 18.1 3.13 72* 75.66
67 5 1 1 0 1 11.4 2.95 72* 65.46
68 10 1 1 0 1 18 3.8 72* 79.91
69 15 1 1 0 1 66.45 7.73 72* 90.12
70 5 2 1 0 1 19.5 4.58 72* 83.35

*Denotes a DP that terminated due to exceeding its time limit

Across all batches 14 total DPs did not deliver all their serials before exceeding their time

limits. Table 9 summarizes DPs that did not deliver their serials within their specified time

limits.

46

Table 9. Summary of DPs that did not deliver all serials before exceeding
their time limit.

DP MAXK FAST-
PATHS

HOPS-
ADD

USEABS
MIPGAP

Time
limit
(hours)

Prop.
serials
delivered

Obj.
Func
Value

MIP
GAP
(%)

9 15 1 1 1 24* 0.69 199822.28 100

11 10 2 1 1 24* 0.00 650416.46 100

12 15 2 1 1 24* 0.32 443719.41 100

23 10 2 1 1 48* 0.83 107504.14 100

24 15 2 1 1 48* 0.43 372067.68 100

35 10 2 1 1 72* 0.61 254948.71 100

36 15 2 1 1 72* 0.32 443719.41 100

44 10 1 1 0 24* 0.94 41355.91 100

45 15 1 1 0 24* 0.97 17938.77 100

47 10 2 1 0 24* 0.00 650,416.46 100

48 15 2 1 0 24* 0.32 443719.41 100

60 15 2 1 0 48* 0.43 372067.68 100

71 10 2 1 0 72* 0.84 101995.02 100

72 15 2 1 0 72* 0.43 372067.68 100

*Denotes a DP that terminated due to exceeding its time limit

Table 9 yields some interesting insights about the effect the factors MAXK,

FASTPATHS, and HOPS_ADD have on PE-MIP’s performance. Not a single DP that

failed to deliver all its serials used the input factor MAXK = 5. Furthermore, every DP that

did not deliver all serials in its assigned time limit featured the input factor HOPS_ADD =

1. DPs using MAXK = 5, FASTPATH = 1, and HOPS_ADD = 0 represent the most

constrained inputs in the full factorial DOE. Therefore, every DP not using these values for

these factors are relaxations of the DPs using MAXK = 5, FASTPATH = 1, and

HOPS_ADD = 0. Since many of the DPs relaxed in terms of MAXK, FASTPATH, and

47

HOPS_ADD did not return better results within their assigned time limits, this indicates

that relaxation of these factors comes at the expense of additional computational

complexity. This trade-off of flexibility and complexity within the space of PE-MIPv2’s

input factors is explored in detail in Chapter V.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

V. CONCLUSIONS AND FUTURE WORK

This chapter holistically compares the results of experiments conducted during this

research project to determine what insights have been found. We draw conclusions from

the post-experiment analysis of our work and make determinations about the usefulness

and viability of PE-MIPv2 for solving force closure problems. This chapter ends with ideas

and suggestions for possible additional research related to this thesis and its motivating

problem.

A. TERMINATION CRITERIA

PE-MIPv2 can use either an absolute optimality gap termination criterion or a

relative gap termination criterion. Termination criterion selection has profound

implications for both the quality of PE-MIPv2’s solutions and the computation time

required to achieve an integer optimal solution within tolerance. As demonstrated in Figure

13, the absolute optimality gap termination criterion returns integer optimal solutions

within tolerance drastically faster than the relative optimality gap termination criterion.

50

Figure 13. Boxplot depicting model runtimes for integer optimal solutions

within tolerance achieved using an absolute optimality gap termination
criterion.

Even with a 72-hour time limit, no DP using the relative optimality gap termination

criterion returned an integer optimal solution within tolerance. However, at the cost of more

computation time, DPs using the relative optimality gap termination criterion returned

solutions that were much better regarding the time to deliver all serials than those using the

absolute optimality gap. The relationship between solution quality and termination criteria

is illustrated in Figure 14.

51

Figure 14. Boxplot depicting time to deliver all serials by termination criteria.

These results suggest different applications for PE-MIPv2 using these two different

termination criteria. PE-MIPv2 can inform debate on issues requiring rapid input for time

constrained decisions via expedited model runs using the absolute optimality gap

termination criterion. Such an application of PE-MIPv2 produces information for a

decision maker at the speed of relevance. This information comes at the cost of the quality

of the solution relative to a solution obtained using the relative optimality gap termination

criterion and additional runtime. On the other hand, if PE-MIPv2 is used to inform

deliberate planning in a non-time constrained environment, analysts can afford allowing

PE-MIPv2 to run for longer times in pursuit of better solutions.

Another possible use of PE-MIPv2 is for large-scale data farming experiments in

support of acquisitions decisions concerning connectors. In this context, analysts would

execute many DPs to understand the interactions between the quantities and capabilities

required for prospective connectors under consideration for acquisition. The requirement

of running a large number of DPs lends itself towards using the absolute optimality gap

termination criterion to ensure sufficient DPs are run to fully explore the design space. This

application warrants further research both in terms efficient experiment designs as well as

52

PE-MIPv2’s natural computational complexity. As will be discussed in the next section of

this chapter, computational difficulty is an aspect of PE-MIPv2 that must be reckoned with

when designing future experiments.

B. INPUT FACTORS AND COMPUTATIONAL DIFFICULTY

As indicated in Chapter IV, Section D, the values used for the PE-MIPv2 input

factors MAXK, FASTPATHS, and HOPS_ADD can significantly affect PE-MIPv2’s

outputs. These inputs primarily affect PE-MIPv2’s outputs via increases in computational

difficulty that inhibit PE-MIPv2 from quickly finding integer optimal solutions. Increases

in computational difficulty are most easily quantified by the number of variables which

PE-MIPv2 attempts to solve for a given DP. Consequently, a DP with more variables to

solve for is less likely to deliver all its serials or return an integer optimal solution within

tolerance. This dynamic is well demonstrated by Figure 15 and Table 10.

Figure 15. Boxplot depicting the number of variables for DPs that delivered

all serials versus DPs that did not.

53

Table 10. Summary statistics for number of variables in DPs that delivered
all serials versus DPs that did not.

All
Delivered

Min. 1st.
Quart.

Median Mean 3rd
Quart.

Max.

TRUE 208,376 270,299 556,607 492,728 627,306 1,220,271
FALSE 556,607 1,220,271 1,220,271 1,391,550 1,856,083 1,856,083

These summary statistics and visualizations of PE-MIPv2’s variable counts clearly

demonstrate that DPs that failed to deliver all serials generally have more variables

requiring a solution by PE-MIPv2 than those DPs that deliver all serials. The number of

constraints in the model also affects PE-MIPv2’s computational complexity. The 13

constraints of PE-MIPv2’s formulation create sets of rules that the model’s decision

variables must adhere to remain within the DP’s feasible region. Like the number of

variables in the DP, larger numbers of constraints in a DP trend towards failure to deliver

all serials before exceeding the DP’s time limit as shown in Figure 16 and Table 11.

Figure 16. Boxplot depicting the number of variables for DPs that delivered

all serials versus DPs that did not.

54

Table 11. Summary statistics for number of constraints in DPs that delivered
all serials versus DPs that did not.

All
Delivered

Min. 1st.
Quart.

Median Mean 3rd
Quart.

Max.

TRUE 413,500 537,776 1,029,074 960,917 1,252,470 2,128,413
FALSE 1,111,655 2,128,413 2,128,413 2,464,471 3,229,164 3,229,164

Figure 16 and Table 11 further illustrate that less complex DPs suggest a higher

likelihood of successful serial delivery within a specified time limit. This trend is also well

illustrated by Figure 17, which uses a partition tree to depict the effect of input factors on

successful serial delivery.

Figure 17. Partition tree depicting the effect of input factor on the successful
delivery of all serials for each DP (row).

As shown in Figure 17, simpler inputs for MAXK, FASTPATHS, and HOPS_ADD

result in more DPs that successfully deliver all serials. The following subsections describe

55

how the input factors MAXK, FASTPATHS, and HOPS_ADD influence PE-MIPv2’s

solutions and computation time.

1. MAXK

MAXK, the number of connector legs allowed per DP has a significant effect on

the computational difficulty and performance of PE-MIPv2. The research team began to

suspect that higher MAXK values detrimentally affect PE-MIP’s solutions and model

runtimes during experiments with PE-MIPv1 described in Appendix B: PE-MIP

Development. Preliminary experiments with PE-MIPv1 returned poorer solutions with DPs

using MAXK = 10 versus those DPs with MAXK = 5. These results motivated some

exploratory calculations by the research team to determine how many connector legs are

necessary to support the two MLR deployment problem with the given input serials and

connectors. Examining the lift capacity of the connectors at the square footage of serials

requiring transportation yielded several insights about relationship between MAXK and

the two MLR deployment problem. These “back of the envelope calculations” are

summarized below.

Total number of serials in the two MLR deployment problem: 472

Total serial size (TSS) in square feet: 173,443.3 square feet

Total connector capacity (TCC): 195,468 square feet

Approximate total loads (TL) required for two MLR deployment (TSS/
TCC): (173,443.3 square feet / 195,468 square feet) ≈ 0.887323 loads

Total serial legs required as a sum of MINHOPS: 1416

Total serial legs (TSL) accounting for IOP node and reducing to arcs:
1416-(2×472) = 472

Approximate total connector legs required as TL*TSL: 0.887323 × 472
≈ 419

Average number of connector legs required per serial delivery: 419/472
≈ 0.8877

56

The calculated approximate number of connector legs required per serial (~0.8877)

suggests that using all available connectors both MLRs could deploy all their equipment in

a single movement. Such a deployment would by necessity assume optimal connector

packing and subdivision of serials (and equipment) to account for the absence of these

considerations in the “back of the envelope” calculations. At first glance this result might

seem nonsensical, but additional scrutiny of the two MLR deployment problem’s inputs

reveals why a small number of connector legs is feasible. Both MLRs’ source nodes (D

and L) are directly connected to their respective StS nodes (J and G respectively).

Regarding connectors, the only connector type that cannot access each source/StS node is

the CH-53K, which cannot access nodes D or L. The smallest serial is 6.72 square feet, and

the 48 smallest serials can reach their destinations via a single connector leg using a MV-

22B, which is the least capable connector in terms of useable square footage. Furthermore,

334 total serials (70% of all serials) can reach their destination StS node on a KC-130J

using a single connector leg. Therefore, due to the quantity/types of connectors available,

the composition of the serials, and the structure of the network the complete deployment

of two MLRs is possible using a small value of MAXK.

Higher values of MAXK mean that a connector can traverse more arcs during its

employment. This has the direct effect of providing PE-MIPv2 with much more flexibility

in the solutions it generates to deliver all serials. The second order effect of this flexibility

is that serials could spend much more time embarked on a connector awaiting delivery to

its ultimate destination. In other words, a serial embarked on a connector executing a DP

with a high MAXK value could visit many more nodes than necessary to reach its

destination StS node. This visitation of extraneous nodes by embarked serials occurs

because PE-MIPv2 is not constrained by a low MAXK value that forces efficient serial

delivery via the limited number of connector legs available. The relationship between

MAXK and time of last serial delivery is clearly visualized in Figure 18.

57

Figure 18. Boxplot depicting time to deliver all serials by MAXK value.

Table 12. Summary statistics for time to deliver all serials by MAXK value.

MAXK Min. 1st.
Quart.

Median Mean 3rd
Quart.

Max.

5 9.00 9.55 24.40 115.18 43.00 1377.45*
10 9.00 9.00 28.40 34.25 64.60 65.70
15 9.00 18.55 52.50 53.09 78.67 117.75

*DP 46 returned an outlier of 1377.45 days

If given enough time PE-MIPv2, can find solutions approaching integer optimality

within tolerance even for DPs with higher MAXK values. However, finding better

solutions for higher MAXK values comes at the cost of computational difficulty and model

runtime. Simply put, larger MAXK values increase the number of variables that PE-MIPv2

must solve; this phenomenon is illustrated in Figure 19. Increases in variables results in

increasing the amount of time required for finding an integer optimal solution within

tolerance.

58

Figure 19. Boxplot depicting number of model variables by MAXK value for

DPs that delivered all serials.

Table 13. Summary statistics for quantity of model variables by MAXK
value for DPs that delivered all serials.

MAXK Min. 1st.
Quart.

Median Mean 3rd
Quart.

Max.

5 208,376 208,376 270,299 325,365 427,731 585,163
10 417,489 417,489 417,489 522,047 556,607 1,220,271
15 627,306 627,306 627,306 686,301 735,463 843,619

The second order effect of the increased computational difficulty inherent in large

values of MAXK is that PE-MIPv2 will terminate its computation before returning a fast

and efficient solution for delivering all serials. Termination before returning a fast and

efficient solution while using the relative optimality gap criterion occurs because it has

exceeded its time limit. For the absolute optimality gap termination criterion, PE-MIPv2

terminates because it has reached a less desirable albeit satisfactory solution for this

termination criterion. Furthermore, the increased computational difficulty associated with

larger MAXK value results in PE-MIPv2’s failure to deliver all serials before exceeding

its time limit. As shown in Table 9, located in Chapter IV, Section D, every DP that failed

59

to deliver all serials before exceeding its time limit had values of MAXK = 10 or MAXK

= 15.

2. HOPS_ADD

HOPS_ADD is the input factor used to help define the maximum serial path length

allowed for consideration by the model. HOPS_ADD is used to calculate a maximum path

length in terms of nodes visited via the formula MAXHOPS = HOPS_COEF * MINHOPS

+ HOPS_ADD. A full description on this formula is found in Chapter IV, Section C. For

the final experiment the research team used values HOPS_COEF = 1 and HOPS_ADD =

0 or 1 for the full factorial DOE. HOPS_ADD = 0 can be interpreted as meaning that for

DPs with HOPS_ADD = 0 only serial paths with the shortest possible length in terms of

nodes visited are considered by PE-MIPv2. For DPs with HOPS_ADD = 1, serial paths

can contain one node extra in addition to the minimum number required to travel from the

source node to the destination node.

DPs using HOPS_ADD = 1 exhibited greater computational difficulty and

correspondingly less optimal solutions than DPs using HOPS_ADD = 0. As with MAXK,

the increased computational difficulty innate in those DPs with HOPS_ADD = 1 versus

HOPS_ADD = 0 is easily quantified by comparing the number of variables associated with

these HOPS_ADD values as illustrated in Figure 20 and Table 14.

60

Figure 20. Boxplot depicting number of variables for DPs that delivered all

serials for HOPS_ADD = 0 and HOPS_ADD = 1.

Table 14. Summary statistics for number of model variables by HOPS_ADD
value.

HOPS_ADD Min. 1st.
Quart.

Median Mean 3rd
Quart.

Max.

0 208,376 208,376 417,489 426,826 627,306 627,306
1 270,299 485,030 570,885 587,463 649,777 1,220,271

The visualization and summary statistics in Figure 20 and Table 14 clearly capture

how a PE-MIPv2 model instance becomes more complex using HOPS_ADD = 1. As

shown in the Figure 21 and Table 15, this added complexity returns degraded solutions

regarding the key model output metric time to deliver all serials.

61

Figure 21. Boxplot depicting time to deliver all serial by HOPS_ADD = 0 or

1 for DPs that delivered all serials.

Table 15. Summary statistics for time to deliver all serials (in days) by
HOPS_ADD value.

HOPS_ADD Min. 1st.
Quart.

Median Mean 3rd
Quart.

Max.

0 9.0 9.0 19.0 30.1 43.0 91.9
1 9.3 26.8 47.10 129.04 65.89 1377.45

*DP 46 returned an outlier of 1377.45 days

The root cause of why PE-MIPv2 returns lower quality solutions for DPs with more

computational difficulty is the same as was discussed in the previous section concerning

MAXK. DPs using HOPS_ADD = 1 spend more time solving for more variables compared

to those using HOPS_ADD = 0 then subsequently terminate upon reaching their time limit.

One must also note as shown in Table 7, every DP that failed to deliver all serials used

HOPS_ADD = 1. Therefore, the difficulty correlated with HOPS_ADD = 1 also manifests

itself in partial solutions like those associated with larger MAXK values.

3. FASTPATHS

The input factor FASTPATHS dictates how many candidate serial paths PE-MIPv2

should consider for a serial after filtering by serial path length has already occurred. The

corresponding filter selects serial paths based on each serial’s transit time across a path

62

while embarked on the fastest connector with sufficient capacity capable of traversing each

arc of the path. The transit time filter implemented via FASTPATHS ensures that slow

serial paths in terms of real transit time are not considered by PE-MIPv2. The full factorial

DOE for the final experiment included FASTPATHS = 1 or 2, meaning that only the fastest

serial path, or first and second fastest serial paths, were included for consideration by PE-

MIPv2. The value used for FASTPATH affects the quality of the solution generated by

PE-MIPv2 and the model’s computational complexity, though not to the degree as MAXK

and HOPS_ADD as demonstrated in the previous subchapters and in Figure 22 and Table

16.

Figure 22. Boxplot depicting time to deliver all serials by FASTPATH value.

Table 16. Summary statistics for time to deliver all serials (in days) by
FASTPATH value.

FASTPATH Min. 1st Quart. Median Mean 3rd Quart. Max.

1 9.00 9.90 34.20 39.11 64.65 177.75

2 9.00 16.02 24.80 116.09 48.94 1377.45*

*DP 46 returned an outlier of 1377.45 days

63

Figure 22 and Table 16 show that differing values of FASTPATH can return

comparable results in terms of the time to deliver all serials. The real insight concerning

FASTPATH is its interaction with the factors MAXK and HOPS_ADD. DPs containing

some combination of MAXK = 10 or 15, HOPS_ADD = 1, and FASTPATH = 2 are most

likely to fail to deliver all serials before reaching their time limit. 11 of 14 DPs that could

not deliver all serials within their assigned time limit used FASTPATH = 2. This result is

even more noteworthy because DPs with FASTHPATH = 2 account for every DP using

the absolute optimality gap termination criteria that failed to deliver all serials. The full

descriptions of all DPs that failed to deliver all serials is found in Table 17.

Table 17. DOE summary for DPs that failed to deliver all serials using
FASTPATH = 2.

DP MAXK FASTPATHS HOPS_ADD USE_ABSMIP
GAP

Time
limit
(hours)

Prop.
serials
delivered

11 10 2 1 1 24 0.00

12 15 2 1 1 24 0.32

23 10 2 1 1 48 0.83

24 15 2 1 1 48 0.43

35 10 2 1 1 72 0.61

36 15 2 1 1 72 0.32

47 10 2 1 0 24 0.00

48 15 2 1 0 24 0.32

60 15 2 1 0 48 0.43

71 10 2 1 0 72 0.84

72 15 2 1 0 72 0.43

64

C. OTHER MODEL ATTRIBUTES

1. The Serial Builder Heuristic Algorithm

Joint Publication 3-02 Amphibious Operations defines a serial as “a group of

landing force units and their equipment that originate from the same ship and that, for

tactical or logistical reason, will land on a specified beach or landing zone at the same time”

(Department of Defense [DOD] 2019). The current serial builder heuristic algorithm used

by both PE-MIP versions and S-MIP does not employ any tactical or logistical

considerations in how it builds serials. This means that equipment is packaged together

without any real-world consideration for how it is used. As discussed in Chapter III, certain

pieces of equipment must travel with other associated pieces of equipment and qualified

operators to facilitate operational employment of that equipment. For example, a trailer

needs a truck to pull it on and off a connector and then tow it to where it is needed. The

serial builder heuristic algorithm has no means of accounting for this consideration and

could build an entire serial of towed equipment without prime movers. Such serials in an

operational context could degrade the efficiency of the network by jamming connectors

and StS nodes with immovable equipment or worse.

In addition to this operational consideration, the serial builder heuristic algorithm

is designed in such a way that it prioritizes making many small serials which can be loaded

on any type of connector. This aspect of the heuristic serial builder algorithm results in

many more serial paths enumerated by PE-MIP’s path enumeration algorithm. These

additional serial paths in large scale problem instances can dramatically increase the size

and complexity of the optimization problem causing much longer model runtimes.

2. Model Time Considerations

Both versions of PE-MIP are formulated as a continuous-time model. However,

serial transit times and key output metrics such as the time to deliver all serials are

subdivide and rounded into discrete increments of tenths of days. This aspect of PE-MIP

was inherited from the antecedent model S-MIP. This discretization of time and its

associated rounding discards or degrades important data in support of overall model

simplicity. Rounded and discretized model times also make trouble shooting PE-MIPv2

65

and debugging its code more difficult than necessary. Future iterations of PE-MIPv2 could

be improved using continuous times with an option to convert times into different units for

key output metrics such as the time to deliver all serials and other outputs of interest.

D. RECOMMENDATIONS FOR FUTURE WORK

1. Route Circulation Models

PE-MIP and S-MIP model the movement of Marine forces from their source to

destination. The type of movement modeled by PE-MIP and S-MIP represents the initial

deployment of Marine forces as they first approach the locations from which they will

operate during EABO. However, Marine forces will not remain static after their initial

deployment to the operating area. For various tactical and logistical reasons Marine forces

will continuously move throughout the operational area after reaching their initial operating

positions. For example, Marine forces will need to habitually resupply EABs with

consumable supplies and rotate personnel such as maintenance teams or evacuate personnel

with combat and non-combat related injuries. These movements throughout the operating

area will also require optimal use of limited numbers of connectors.

A model that considers optimized route planning for connectors in circulating

routes could significantly improve the performance of sustainment networks established

for supporting distributed EABs. This model would create routes throughout dispersed

EABs like those used by city buses to support municipal public transportation needs.

Solutions from such a model could provide valuable insights on sustainment operations in

an EABO context. Furthermore, such a model could help force planners determine the

appropriate quantity and mixture of different types of connectors needed for sustaining an

established network of EABs.

2. Models with Adversarial Interdiction

Adversarial interdiction of logistics platforms is an omnipresent consideration in

the operational plans of any professional military. PE-MIP and S-MIP were designed for

military logistics applications in an EABO setting, but neither model in its current form

has a way of accounting for or considering the effects of enemy actions against the

66

solutions it generates. Future research should explore the effects of enemy interdiction on

the solutions created by PE-MIPv2 then improving those solutions to account for enemy

actions. Every connector transit represents an opportunity for the adversary to interdict a

connector or discover the location of Marines force by tracking a connector from point to

point. PE-MIPv2 could be improved in the short term by minimizing the number of transits

made by empty connectors thus reducing unnecessary exposure to enemy interference.

More elaborate future models could include some type of stochastic simulation of enemy

actions against the connectors and EABs within the model’s network using a second arc

cost related to risk.

3. Improving the Serial Builder Heuristic Algorithm

As discussed in the previous section, PE-MIPv2’s current serial builder heuristic

algorithm has several deficiencies. The first deficiency is that the serial builder algorithm

builds many small serials to maximize the flexibility of serial assignment to different types

of connectors i.e., the algorithm builds small serials that can fit on any sized connector.

The second order effect of constructing many small serials is added computational

difficulty since with more serials PE-MIPv2 must now filter and consider more candidate

serial paths. The second deficiency of PE-MIPv2’s serial building algorithm is that it

creates nonsensical serials with equipment mixes that at best have no operational benefit

of travelling together. PE-MIPv2’s serial building algorithm could be improved by turning

it into a decision support tool that helps users construct efficient serials based on relational

rules for equipment pairing. Such a decision support tool could provide users with different

options for serial construction to maximize efficient use of connector capacity or for

maximizing the operational effectiveness of serials once they are delivered to their initial

operating position. Serial construction is driven by operational employment considerations;

therefore, it is neither realistic nor desirable to entirely automate serial construction without

human input for insight on how the serials are operationally employed. After human review

and adjustment input serials constructed via a serial construction decision support tool can

be uploaded via the InputSerial tab as inputs for PE-MIPv2 or a descendant model.

67

APPENDIX A. S-MIP MODEL FORMULATION

The model formulation contained in Appendix A represents Lieutenant Colonel

Freeman’s S-MIP as it existed in August 2021 after revisions by Dr. Craparo. Lieutenant

Colonel Freeman developed his initial formulation of S-MIP in 2019 while serving as an

analyst assigned to OAD. Dr. Craparo and associates modified S-MIP while conducting

research at NPS in support of an OAD-sponsored project.

A. SETS AND INDICES

v CXRS∈ connectors (“cxrs”)
 s EQUIP∈ serials
 ,i j NODES∈ nodes/locations
 (), ,v i j TRIPS∈ arcs/transits
 k LEGS∈ legs executed by the connectors (first leg, second leg, etc.)
 (),v k CLEGS∈ connector v executes at least k legs

 (), , , _v k i j S TRIPS∈ cxr transits

 (), , , ,s v k i j LOADS∈ cxr-serial transits

B. DATA [UNITS]

vh usable deck area for cxr v [sq.ft]
 sv value/priority weight for serial s

sa deck footprint size of serial s [sq.ft]

sb initial/starting locn (node) for serial s

se terminal/ending locn (node) for serial s

, ,v i jt time req’d for cxr v to make transit (i, j) [days]
LAYOVER time cost for cxrs to enter/leave nodes [days]
BIG “infinite” = |Legs| * (max(t [v,i,j]) + LAYOVER) * 10
STEP =1,2,...,MAXLOOPS; the current successive time window

C. DECISION VARIABLES [UNITS]

,v kW time>=0 at which cxr v completes leg k [days]
 , , ,v k i jX =1 if cxr v makes transit (i, j) on leg k; else 0

68

 , , , ,s v k i jY =1 if serial s loaded for transit (v,k,i,j); else 0
 ,s iZ time>=0 at which serial s arrives at node i [days]
 sP =1 if serial s not delivered to destination e [s]; else 0
 sU shortest-path distance>=0 remaining for serial s to e [s] [miles]

D. FORMULATION

()

()
() ()

() ()

()
() ()

,, , , , ,

, , , ,
, , :(, , , ,)

, , , , , , 1 ,

, , ,
, :(, , ,) _

min

. . 1 , C1

, , , _ : 1 C2

1 , C3

ss s s s e s SW X Y Z P U s EQUIP

s v k i j
v k j s v k i j LOADS

v i j v k i j v k v k

v k i j
i j v k i j S TRIPS

z STEPv U v Z v P BIG

s t Y s i PUTS

t X W LAYOVER W v k i j S TRIPS k

X v k CLEGS

a

∈

∈

−

∈

= + +

≤ ∀ ∈

+ + ≤ ∀ ∈ >

≤ ∀ ∈

∑

∑

∑

() ()

() ()

() ()
() ()

, , , , , , ,
:(, , , ,)

, 1, , , , ,
:(, ,)

, , , , , , , ,
, , : , , , ,

,

, , , _ C4

, , , _ : 1 C5

, , , , : C6

s s v k i j v v k i j
s s v k i j LOADS

v k j i v k i j
j v j i TRIPS

s v k i j s v k j i s
v k j s v k j i LOADS

v k

Y h X v k i j S TRIPS

X X v k i j S TRIPS k

Y Y s v k i j LOADS i b

W

∈

′−
′ ′ ∈

′ ′ ′
′ ′ ′ ′ ′ ′ ∈

≤ ∀ ∈

≥ ∀ ∈ >

≤ ∀ ∈ ≠

+

∑

∑

∑

() () ()

() ()
()

() ()

()

, , , , ,

, , , ,
, , , :(, , , ,) , , , , , _

, , , ,
(, , ,) _

, , , , , , ,

1 , , , , C7

1 C8

C9

1

s

s

s v k i j s j

s s v k i j
v k i j s v k i j LOADS j e v k i j S TRIPS

b s v k i j i j s
v k i j S TRIPS

s i v i j s v k i j

Y BIG LAYOVER Z s v k i j LOADS

P Y s EQUIP

spd Y spd spd U s EQUIP

Z t Y BI

∈ = ∈

∈

− + ≤ ∀ ∈

≥ − ∀ ∈

− − ≤ ∀ ∈

+ + −

∑

∑

() ()
()

{ } ()

,

, ,

, , , , , , ,

, , , , C10

, , 0 , , , C11

, , 0,1 , , , , C12

v k

v k s i s

v k i j s v k i j s

G LAYOVER W s v k i j LOADS

W Z U v k s i

X Y P v k s i j

+ ≤ ∀ ∈

≥ ∀

∈ ∀

Constraint (C1) states that a serial s may only be loaded on one connector v at a time.

Constraint (C2) states that the time W[v,k] at which vessel v completes leg k,i,j is not less
than the time at which leg k-1 is completed, plus transit time T[v,i,j] + LAYOVER.

Constraint (C3) states that vessel v may only make one transit (i,j) per leg k.

Constraint (C4) states that the total deck space of serials being delivered by vessel v on leg
k from i to j cannot exceed H[v].

69

Constraint (C5) states that vessel v can only make transit (i,j) on leg k if it also made a
transit to i on leg k-1.

Constraint (C6) states that serial s can only be delivered by vessel v on leg-transit (k,i,j) if
that serial arrived at i on a different leg-transit (same or other vessel).
Constraint (C7) states that the arrival time of serial s at j Z[s,j] is not less than the vessel v
leg-transit (k,i,j) completion time W[v,k] + LAYOVER, or zero for all trips (v,k,i,j) on
which serial s does not arrive.

Constraint (C8) records that serial s that did not reach its destination es, if applicable.

Constraint (C9) states that the shortest-path distance (spd) U[s] from serial s final location
to its intended destination E[s] is not less than the spd from its source B[s] minus the sum
of the differences (spd [i] - spd [j]) for all load transits (i,j) conducted.

Constraint (C10) states that the k leg-completion time of vessel v W[v,k] is not less than the
transit time t [v,i,j] plus the arrival time Z[s,i] for any cargo loaded from i to j, or zero for
cargo not loaded.

Constraints (C11) and (C12) define decision variable domains.

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

APPENDIX B. PE-MIP DEVELOPMENT

A. INITIAL EXPERIMENTS WITH PE-MIPv1 AND S-MIP

After building a script for implementing the PE-MIPv1 reformulation of S-MIP the

research team began testing PE-MIPv1 with small problem instances to evaluate and debug

PE-MIP’s code. These early PE-MIPv1 model runs indicated that PE-MIP performed about

as well the current version of S-MIP. Both models returned similar objective values after

comparable runtimes on the research team’s personal computers. These initial tests

motivated the research team to move on to larger scale problem instances on NPS’s

Hamming high-performance computing cluster. The research team decided that initial

experiments with PE-MIPv1 should directly compare its performance with S-MIP to gain

insights on any immediate performance differences between the two models. Therefore,

initial experiments featured simultaneous runs of PE-MIPv1 and S-MIP with the same

input data.

The first experiment directly comparing PE-MIPv1 and S-MIP was conducted from

29 Nov 21 – 07 Dec 21. This experiment used an input file supplied by the SEED Center.

The inputs for this experiment represent the deployment of a single MLR from two source

nodes to an initial operating position serviced by a single StS node. This experiment used

the model’s heuristic serial builder and data provided by the WhatWhere worksheet for

building the MLR’s serials rather than predefined user input serials. For simplicity, a single

DP was used during this experiment. Two expeditionary fast transports (TEPF) and four

light amphibious warships (LAW) were available as surface connectors with no air

connectors available in this DP. The Sea State was set at Sea State 4, and the desired (mixed

integer program) MIP tolerance was 0.2.

Both PE-MIPv1 and S-MIP produced integer feasible solutions but failed to find

optimal solutions within the specified MIP tolerance in the 192-hour time limit placed on

the experiment. PE-MIPv1 returned an objective function value of 56613.6 with

approximately 96% of serials delivered in 45.8 days and a MIP gap of 97.3. The S-MIP

experiment produced similar results with an objective function value of 46925.3 with

72

approximately 93% of serials delivered in 47.8 days and a MIP gap of 96.75. The results

of these experiments are summarized in Table 18.

Table 18. Summary of key experiment output metrics comparing S-MIP and
PE-MIPv1 performance for a single MLR deployment problem.

Model Serial
input mode

Proportion
of
serials
delivered

Last
serial
delivered
time
(days)

Objective
function
value

Relative
MIP gap

PE-MIPv1 Heuristic
builder:
WhatWhere

~0.96 45.8 5139.6 97.3%

S-MIP Heuristic
builder:
WhatWhere

~0.93 47.8 46925.3 96.75%

The results of this initial experiment motivated the design of a subsequent

experiment. During this second experiment four total model runs would help the research

team determine the effects of using the heuristic serial builder algorithm versus user-

defined input serials. For the second experiment both S-MIP and PE-MIPv1 would run

using one input file featuring user-defined input serials and another with an input file

requiring the model’s serial building heuristic to build serials, i.e., with equipment input

via a WhatWhere worksheet. The second experiment would also simulate deploying a

single MLR through the same network as the first experiment with all DP factors carried

over from previous experiment

The research team executed the second experiment from 15 Dec 21 – 04 Jan 22

using NPS’s Hamming high performance computing cluster. All model runs returned

integer feasible solutions before terminating upon reaching their 192-hour time limit. Table

3 summarizes the results of this experiment.

73

Table 19. Summary of key experiment output metrics comparing S-MIP and
PE-MIPv1 performance for a single MLR deployment problem using both

user-defined input serials and serials built using the model’s heuristic
algorithm.

Model Serial
input mode

Proportion
of
serials
delivered

Last
serial
delivered
time (days)

Objective
function
value

Relative
MIP gap

PE-MIPv1 Heuristic
builder:
WhatWhere

~0.98 16.2 5139.6 92.7%

PE-MIPv1 User input:
InputSerials

1 14.5 90.1 49.83%

S-MIP Heuristic
builder:
WhatWhere

1 14.5 4722.1 92.08%

S-MIP User input:
InputSerials

1 14.5 90.1 74.95%

The first insight gleaned from this experiment was the effect of using user-defined

input serials versus serials built by PE-MIPv1 and S-MIP’s serial builder heuristic

algorithm. As shown in Table 19 in both instances where the serial builder heuristic

algorithm was used the models returned much larger objective function and MIP gap

values. PE-MIPv1 run using the serial builder heuristic algorithm also failed to deliver all

serials and returned a higher serial delivery time. These outputs were the research team’s

first indication that the serial builder heuristic algorithm could be impeding the

performance of both PE-MIPv1 and S-MIP.

Besides the insight concerning the serial builder heuristic algorithm, these first two

experiments demonstrated that in large problems PE-MIPv1 did not outperform S-MIP in

the key metrics of objective function value, serial delivery time, MIP gap, or model

runtime. These results motivated the research team to modify the path enumeration code

to further limit the number of candidate serial paths constructed for PE-MIPv1. The

research team determined that implementing a modified version of BFS within the path

enumeration code was a viable method of limiting the number of nodes visited in candidate

serial paths.

74

The modified BFS algorithm implemented within the path enumeration returns the

shortest path length from the source to StS node in terms of the number of nodes visited

along the path. In the real world this means that the number “hops” that a connector would

need to make between StS sites in the network is limited to only the minimum number of

hops (“MINHOPS”) required to reach the destination StS plus a user-defined tolerance;

this value is stored as a variable called “MAXHOPS.” The number of candidate serial paths

generated for the model is then filtered to only those paths with the capacity for the serial

to traverse the path and a path length less than or equal to “MAXHOPS.”

B. EXPERIMENTS USING ADDITIONAL SERIAL PATH FILTERS

1. Experiments Using Breadth-First Search Path Length Filter

With the BFS filter in place, the research team engaged in an experiment testing

PE-MIP’s efficiency and effectiveness on the deployment of a single MLR using different

inputs for PE-MIP. For one of the inputs the maximum path lengths in hops was

MAXHOPS = MINHOPS + 1 and in the other version MAXHOPS = MINHOPS. This

experiment used the same input file for both inputs for all other factors with six DPs. The

targeted relative MIP gap for all experiment DPs was 20% and the only factor of the DPs

that varied across the DPs was the model run time which increased from eight hours to 240

hours for . Table 20 summarizes the input for all 24 DPs used in this experiment.

Table 20. Summary of factor inputs for initial experiment using path length
filters.

DP MAXK HOPS_ADD Time Limit (hours) Serial Input Method

1 6 1 8 User input serials

2 6 1 24 User input serials

3 6 1 48 User input serials

4 6 1 72 User input serials

5 6 1 96 User input serials

75

DP MAXK HOPS_ADD Time Limit (hours) Serial Input Method

6 6 1 240 User input serials

7 6 1 8 Heuristic serial builder algorithm

8 6 1 24 Heuristic serial builder algorithm

9 6 1 48 Heuristic serial builder algorithm

10 6 1 72 Heuristic serial builder algorithm

11 6 1 96 Heuristic serial builder algorithm

12 6 1 240 Heuristic serial builder algorithm

13 6 0 8 User input serials

14 6 0 24 User input serials

15 6 0 48 User input serials

16 6 0 72 User input serials

17 6 0 96 User input serials

18 6 0 240 User input serials

19 6 0 8 Heuristic serial builder algorithm

20 6 0 24 Heuristic serial builder algorithm

21 6 0 48 Heuristic serial builder algorithm

22 6 0 72 Heuristic serial builder algorithm

23 6 0 96 Heuristic serial builder algorithm

24 6 0 120 Heuristic serial builder algorithm

Table 21 summarizes the results of this experiment and its key output metrics for

PE-MIPv1 using MAXHOPS = MINHOPS + 1 and user input serials.

76

Table 21. Summary of key experiment output metrics for PE-MIPv1 using
MAXHOPS = MINHOPS + 1 with user input serials

DP Prop. of
serials
delivered

Last
serial delivered
time (days)

Objective
function
value

Relative
MIP gap

Model
runtime
(hours)

1 1 14.5 90.1 84.98% 8
2 1 14.5 90.1 75.36% 24
3 1 14.5 90.1 79.94% 48
4 1 14.5 90.1 74.25% 72
5 1 14.5 90.1 69.74% 96
6 1 14.5 90.1 50.97% 240

As shown by Table 21, although each DP achieved an integer feasible solution, not

a single DP in this trial produced a solution within the specified MIP gap tolerance. When

the serial builder heuristic algorithm was used to build the serials PE-MIPv1 performed

worse in terms of relative MIP gap and objective function value. However, it did return

slightly better time of last serial delivery as depicted by Table 22 and Table 23.

Table 22. Summary of key experiment output metrics for a PE-MIP using
MAXHOPS = MINHOPS + 1 with serials built by the serial builder

heuristic algorithm.

DP Prop. of
serials delivered

Last
serial
delivered
time (days)

Objective
function
value

Relative
MIP gap

Model
runtime
(hours)

7 1 13.9 5944.2 93.69% 8
8 ~0.98 13.9 5932.3 93.68% 24
9 1 13.9 5924.9 93.67% 48
10 ~0.85 13.9 5894.6 93.64% 72
11 ~0.85 Error 5928.1 93.67% 96
12 Memory error caused CPLEX to abort DP 12

77

Table 23. Summary of key experiment output metrics for a PE-MIPv1 using
MAXHOPS = MINHOPS with serials built by the serial builder heuristic

algorithm

DP Prop. of
serials delivered

Last serial
delivered
time (days)

Objective
function
value

Relative
MIP gap

Model
runtime
(hours)

13 1 14.5 4629.9 91.9% 8
14 1 14.5 4629.9 91.9% 24
15 1 14.5 4629.9 91.9% 48
16 1 14.5 4596.8 91.84% 72
17 1 14.5 4629.9 91.9% 96
18 1 14.5 4596.8 91.84% 120

Table 24 displays a significant improvement in model runtime over the results

achieved in any of the other trials. All design points for this trial found a solution within

the desired optimality gap in less than 35 minutes. This result stands in stark contrast to

other trials which could only produce integer feasible solutions in 192 hours. The variance

is model runtimes seen in Table 23 occurs because none of the trials in this experiment had

exclusive use of its respective computing cluster. Therefore, if other tasks were running in

tandem with the model, this could cause variations in the model’s total runtime as seen by

runtimes ranging from 11 to 34 minutes. SEED Center personnel did not attribute any of

the trials reaching their time limit without an optimal solution to this phenomenon.

Table 24. Summary of key experiment output metrics for PE-MIPv1 using
MAXHOPS = MINHOPS with user-defined input serials.

DP Prop. of
serials delivered

Last serial
delivered
time (days)

Objective
function
value

Relative
MIP gap

Model
runtime
(minutes)

19 1 14.5 90.1 19.99% ~27
20 1 14.5 90.1 19.99% ~34
21 1 14.5 90.1 19.99% ~34
22 1 14.5 90.1 19.99% ~28
23 1 14.5 90.1 19.99% ~11
24 1 14.5 90.1 19.99% ~12

78

Analyzing the number of candidate serial paths available for consideration by the

model before and after applying BFS path length and path capacity filter explains the

dramatic differences in model runtime. Table 24 illustrates how the number of serial paths

considered by the model dramatically decreases when the set of candidate paths is filtered

for capacity and path length. A larger set of candidate serial paths results in longer model

runtimes because the model assesses the suitability of each serial path for inclusion in the

optimal solution. Therefore, using a more restrictive filter for serial path length (i.e.

MAXHOPS = MINHOPS) which further limits the number of possible serial paths for

consideration significantly improves model runtime. The quality of the model’s solution as

defined by the objective function value and the time to deliver serials was not adversely

affected by filtering using the more restrictive serial path length filter MAXHOPS =

MINHOPS. Table 25 depicts the relationship between the path length filter and the number

of paths enumerated before and after filtering.

Table 25. Serial paths generated by path enumeration code before and after
BFS path length and path capacity filters are applied.

Serial input method MAXHOPS value Unique
unfiltered
serial paths

Serial
paths accepted after
filtering

User defined MAXHOPS=
MINHOPS +1

3,913 393

Heuristic algorithm MAXHOPS=
MINHOPS +1

20,242 577

User defined MAXHOPS=
MINHOPS

3,913 360

Heuristic algorithm MAXHOPS =
MINHOPS

20,242 406

As demonstrated by these results captured in Tables 21–24 all DPs returned larger

objective function values and MIP gaps when using the serial builder heuristic algorithm

instead of user-defined serials. Table 25 shows that these results are attributable to the fact

that using the serial builder heuristic algorithm results in larger sets of serial paths before

and after filtering. This understanding led to the determination by the research team to

79

forgo future trials using the serial builder heuristic algorithm with the intent of improving

PE-MIP’s runtime and instead use only user-defined input serials loaded via the

InputSerials worksheet. This insight also inspired a spirited discussion within the research

team about the operational usefulness and practicality of the heuristic serial builder which

is covered in Chapter V.

2. Excursions in Support of the Research Sponsor and Subsequent
Experimentation

In early February 2022 OAD contacted SEED Center personnel requesting to revisit

a notional two MLR deployment problem that had been previously tested with S-MIP. This

problem featured the deployment of MLR 12 and MLR 4 from their home stations to a

single initial operating position via two StS nodes and a network containing 15 nodes total.

The serials for this deployment problem were user-defined and the type and number of

available connectors approximated the resources expected to be available in theater for this

type of operation. With 72.25 hours of runtime S-MIP achieved an objective value of

1,627.9 with all serials delivered in 54.3 days. The research sponsor was interested in what

type of results PE-MIP could return with a very brief runtime limited to eight hours. Using

the same inputs as the previous S-MIP excursion PE-MIPv1 returned an objective function

value of 45,550.05 with a proportion of ~0.92 serial delivered in 63.1 days.

The research team decided to embark on a larger experiment after the excursion

into the two MLR deployment problem with abbreviated model runtime. Since PE-MIP

returned promising results for a single MLR deployment problem, it was reasoned that with

additional time PE-MIPv1 could achieve similar results. This experiment would include

eight total DPs each containing the same inputs regarding the number of connectors

available, sea state, and MIP tolerance. The DPs varied the number of legs (MAXK)

allowed per connector and the model runtime. All DPs were executed using a model in

which paths were filtered for length using MAXHOPS = MINHOPS. Table 25 summarizes

the relevant factor varied per DP.

80

Table 26. Experiment factors varied by DP for the initial experiment with a
two MLR deployment problem.

DP MAXK (connector legs) Time limit (hours)
1 5 24
2 10 24
3 5 48
4 10 48
5 5 72
6 10 72
7 5 96
8 10 96

The research team redundantly executed these experimental trials on both NPS’s

Hamming high performance computing cluster and NPS’s Reaper high performance

computing cluster. Performing this experiment redundantly on two different systems was

a fortuitous decision because of unexpected difficulties encountered during the experiment.

The trials run on the Hamming high performance computing cluster experienced several

CPLEX errors causing DPs 3, 5, 6 to terminate while running. DPs 7 and 8 did not run

because the experiment reached its overall time limit. The results from DPs 1, 2 and 4 are

summarized in Table 27. None of these DPs achieved an optimal solution within the

allotted time limit.

Table 27. Summary of key experiment output metrics for the trials
successfully conducted on Hamming during initial two MLR deployment

experimentation.

DP Proportion of
Serials
delivered

Last serial
delivered time
(days)

Objective
function
value

Relative
MIP gap

1 ~0.506 ~48.64 1519.5 84.47%
2 0 N/A N/A 99.95%
4 ~0.3 ~67.35 2190.3 89.23%

The trials run on the Reaper high performance computing cluster did not experience

any errors and returned a full set of results for each design point. Table 27 summarizes the

81

key output metrics from the trials of the experiment run om the Reaper high performance

computing cluster. As with the trails run on the Hamming high performance computing

cluster none of the DPs in Table 28 achieved an optimal solution.

Table 28. Summary of key experiment output metrics for the trials conducted
on Reaper during two MLR deployment experimentation.

DP Proportion of
serials
delivered

Last serial
delivered time
(days)

Objective
function
value

Relative
MIP GAP

1 ~0.33 54.1 1471.45 83.96%
2 ~0.92 63.1 45550.05 99.48%
3 1 52.85 1594.15 85.2%
4 ~0.92 63.1 45550.05 99.48%
5 1 45.4 1385.5 82.97%
6 ~0.99 86.2 3748.2 93.7%
7 1 40.7 1417.8 83.35%
8 ~0.23 86.2 1920.2 87.71%

This experiment yielded two very important insights concerning the performance

of PE-MIP. The first insight was that as the size of the problem increases in terms of

number of serials then the number of serial paths enumerated increases dramatically. All

DPs run on the Hamming and Reaper high performance computing clusters enumerated

1,815,545 possible serial paths and then filtered this set of serial paths down to 2,316

candidate serial paths via BFS and capacity filters. The 2,316 filtered serial paths returned

during this experiment represent a nearly sixfold increase in the number of serial paths

considered by PE-MIP compared to previous experiments. Therefore, the underwhelming

output metrics from this experiment can be at least partially attributed to the increased

scope and complexity of this problem relative to previous experiments.

The second important insight produced by this experiment was that the number of

legs allotted to each connector significantly affects the complexity of the model and its

performance. As shown in Tables 27 and 28 the odd-numbered DPs where MAXK = 5

performed better than the even-numbered DPs where MAXK = 10. This indicates that

MAXK = 10 could be a too permissive value of this factor which results in more

complexity for little return in key performance metrics.

82

3. Experiments Using Transit Time Filters and Reformulation to an
Absolute Optimality Gap

In the interest of further decreasing the model’s computational difficulty the

research team decided to explore additional filters on candidate serial paths. The research

team determined that an additional filter considering the transit time of each serial across

different paths could improve the model’s performance. This filter calculates the transit

times of each serial across a candidate path then selects a quantity of candidate paths

determined by the user input variable FASTPATH. This method did not result in any

appreciable improvements in the model’s runtime or the quality of the model’s solutions.

These results motivated a reformulation of PE-MIPv1 to feature both an absolute

optimality gap rather and a relative optimality gap. This reformulation, known as PE-

MIPv2, is discussed in detail in Chapter III. PE-MIPv2 immediately produced promising

results during initial experiment comparing PE-MIPv2 with PE-MIPv1. As shown in Table

29, a cursory experiment with PE-MIPv2 using the absolute optimality gap termination

criterion returned similar results in terms of proportion of serials delivered and last serial

delivery time for the two MLR deployment problem. PE-MIPv2 returned these outputs in

a fraction of the time required by PE-MIPv1 using a relative optimality gap.

Table 29. Summary of key experiment output metrics for an exploratory trial
conducted on Hamming evaluating the utility of a reformulation using an

absolute optimality gap.

Based on the results of this experiment using an absolute optimality gap the

research team decided to design a final set of experiments evaluating both the relative and

absolute optimality gap termination criterion as inputs for of PE-MIPv2. This final

experiment is described in Chapter IV, Section D.

Proportion of
serials delivered

Last serial delivered
time (days)

Objective
function value

Solution time
(hours)

1 43 11.32 1.96

83

APPENDIX C. CONNECTOR FARMER USER’S MANUAL (V0.17)
(UPTON 2021)

The Connector Farmer User’s Manual (V0.17) is used with permission from Mr.

Stephen Upton of the SEED Center. Connector Farmer User’s Manual (V0.17) supersedes

all previous versions of the Connector Farmer User’s Manual due to incremental

improvements made in this data farming technique. This manual is distributed amongst

NPS students, staff, and research associates experimenting with S-MIP and PE-MIP. The

text of Connector Farmer User’s Manual (V0.17) contained in Appendix C is reproduced

verbatim with minor formatting changes from a digital copy of Connector Farmer User’s

Manual (V0.17).

A. CHANGE NOTES

The main changes that NPS made to the S-MIP model and code during the FY21 work
effort are:

• added Initial Operational Positions (IOP) and alternate Point of Debarkations
(APOD). This included:

– adding a column to the WhatWhere sheet, as well as new syntax to
indicate alternate PODS

– adding a HowFast sheet, to define how long a serial will take to get from
POD to IOP

• model changes (in the ConnectorModelSEED_EMC.py file) made by Prof
Craparo/Steve Upton to improve the rolling horizon implementation and add
VirtualConnectors to facilitate the IOP/APOD changes.

• added an InputSerials sheet to allow the user to define their own serials (loads),
thereby bypassing the internal heuristic that maps sticks (rows on the WhatWhere
sheet) to serials.

See the appendix contained within this manual for more details.

B. INTRODUCTION

ConnectorFarmer is a data farming wrapper around OAD’s ConnectorModel,

written in python, as a collection of python scripts. It uses the multicores on a single

machine to run multiple instances of the ConnectorModel concurrently. ConnectorMiner

is the post-processor that extracts and computes various summary metrics from the output

of a ConnectorFarmer run, and also creates an Excel output spreadsheet with intermediate

84

results for more detailed analysis. It also can use multiple cores on a single machine to

post-process individual run output concurrently.

1. Overview

ConnectorFarmer is composed of ConnectorRunner and

ConnectorModelSEED_EMC (ConnectorModelSEED_EMC is a modification to

ConnectorModelSEED, which is a modification of the original ConnectorModel -see

Appendix for more details). ConnectorFarmer takes as input an Excel spreadsheet

formatted similar to what is used by the original ConnectorModel, where we added the

capability to read in new experiment design factors from the ExperimentDesign sheet of

the Excel input, and two new sheets to facilitate the modeling of Initial Operational

Positions (IOP) and alternate Point of Debarkations (APOD).

The added new factors, that can now be used on the ExperimentDesign sheet, are:

• the Broken Stow Factor and the Sustained Speed in the Sea State parameters of a
connector;

• a set of Experiment-level parameters - VARLIM, MAXLOOPS, SERIALSIZE,
OVERLAP, and LAYOVER;

• and a set of CPLEX parameters (described in the ‘Preparing to run a designed
experiment’ section).

The two new sheets added are:

• a HowFast sheet, to define how long a serial will take to travel from an APOD to
its IOP;

• an (optional) InputSerials sheet, to allow the user to define their own set of serials
(loads), thereby bypassing the internal heuristic that maps sticks to serials.

In addition, we added an IOP column to the WhatWhere sheet, and modified the

syntax allowed in the “StS Site” to support the modeling of APODs. To indicate alternate

PODs for a stick/serial, the user lists the alternate PODs, separated by a “:.” For example,

if a stick/serial can debark at either POD C or POD D, then the user would indicate this by

putting the string “C:D” in the ‘StS Site” column entry (NB: internal/external spaces are

stripped in that string, so you can add spaces for readability; this means, however, that there

can not be any spaces in the PODs name -this mainly affects the definition of the PODs in

the HowFar sheet).

85

2. How ConnectorFarmer works

When started, ConnectorFarmer:

• creates a pool of workers (using python’s multiprocessing library),
• reads in the experimental design from the ExperimentDesign sheet of the Excel

input file,
• creates a run directory for each design point (DP),
• creates a DP-specific Excel spreadsheet in the run directory, and
• calls ConnectorRunner to run the ConnectorModelSEED for an individual DP

instance, for each DP.

After ConnectorFarmer completes, each of the run directories will contain:

• a DP*.cplex.log file, containing the CPLEX log output for the DP,
• a DP*.log file, containing log entries from running ConnectorRunner and

ConnectorModelSEED_EMC,
• a DP*.pkl file, containing the pickled Experiment object,
• a farmer-DP*.log file, containing information on what factors were changed and

their settings, and
• a DP*-input.xlsx file, a revised Excel input file specific for this DP.

ConnectorMiner post-processes the output from a ConnectorFarmer run. It relies

on data from the pickled Experiment object output and the log files to compute a set of

summary metrics and creates an Excel workbook with several sheets containing more

detailed output. After running ConnectorMiner, each of the run directories will have two

added files:

• a DP*-output.csv file, which holds the set of summary metrics,
• a DP*-raw-output.xlsx file, which holds several sheets containing more detailed

output.
After completing post-processing of each individual DP, ConnectorMiner then

concatenates the data from all the DP*-output.csv files into a single file, merges that with

the experimental design data, and then places that file into the study directory. By

convention, this is named “<nameofyourstudydirectory>-alloutput.csv”.

C. PREREQUISITES

Prior to runing ConnectorFarmer and ConnectorMiner, the following software

packages must be installed first. We use the Anaconda distribution (version 4.8.3), which

includes the numpy/scipy, and pandas packages.

86

1. python (we use, and tested with, version 3.7.6)
a. pyomo (we use, and tested with version 5.7)
b. pandas (we use, and tested with version 1.1.0)
c. openpyxl (we use, and tested with version 3.0.3;note this comes with the

Anaconda distribution but not with the generic installers downloaded from
python.org)

d. multiprocessing (part of the python standard library)
2. CPLEX (we use, and tested with version 12.10). If CPLEX is on your PATH, then

ConnectorFarmer will use that version; if you want to use a different version, then
you can add a line to the cplex.config file to indicate the path to your CPLEX
executable. The format is: cplex_path:<the/path/to/your/cplex>.

If you use the Anaconda distribution, version 4.8.3, you will need to install version

1.1.0 of pandas as we use several features that are not present in earlier versions of pandas

(version 4.8.3 of Anaconda comes with pandas 1.0.1)

To do so, at the command prompt, type:

pip install -Iv pandas==1.1.0

D. CONNECTORFARMER INSTALLATION

To install ConnectorFarmer, just unzip the ConnectorFarmer.zip file to a suitable location
on your machine, such as “c:\ConnectorFarmer.” Then create a ‘studies’ folder where you
put individual ConnectorModel Excel input files for your separate experiments. This
‘studies’ folder can be anywhere on your machine (preferably in a path that contains no
spaces). More detail will follow in the Running ConnectorFarmer section.

After unzipping, you should see these files in the directory:

• all-metrics.txt
• ConnectorFarmer.py
• ConnectorFarmerFuns.py
• ConnectorMiner.py
• ConnectorMinerFuns.py
• ConnectorModelSEED_EMC.py
• ConnectorRunner.py
• test_inputs.xlsx
• cplex.config

The Connector* files are the python scripts that are needed to run ConnectorFarmer

and ConnectorMiner. The all-metrics.txt file is used by ConnectorMiner and is a line-

separated list of functions to compute metrics and generate the intermediate output results

87

in the Excel output workbooks. The test_inputs.xlsx file is an Excel input file that can be

used for test running of ConnectorFarmer and ConnectorMiner. The cplex.config file holds

the set of CPLEX parameters that can be modified.

E. PREPARING TO RUN A DESIGNED EXPERIMENT

Prior to running a designed experiment with ConnectorFarmer, using the

underlying ConnectorModelSEED_EMC Mixed Integer Program (MIP), you must have an

input file. This input file is in the form of an Excel workbook with five (5) required sheets:

HowFar, HowFast, ConnectorData, ExperimentDesign, and either a WhatWhere sheet or

an InputSerials sheet. If the user wants to define their own set of serials, thereby bypassing

the internal heuristic that maps sticks to serials, they put that data into the InputSerials

sheet, and place that sheet as the first sheet in the workbook. If instead they want

ConnectorFarmer to assign sticks to serials, then they use the WhatWhere sheet to define

their sticks, making sure the InputSerials sheet, if it exists, is not the first sheet in the

workbook. Both sheets can be in the workbook simultaneously; this allows the user to

easily switch inputs, if desired. However, the InputSerials sheet MUST be the first sheet in

the workbook if the user desires to use that set of input; the WhatWhere sheet can be

anywhere in the workbook. Also, other sheets can be added to the workbook without

affecting the model or the run, e.g., supporting data, etc..

There are a number of requirements that the Excel workbook, and the

corresponding sheets, must satisfy in order to start a ConnectorFarmer/ConnectorModel

run. ConnectorFarmer does pre-validation of the Excel workbook to assist the user, as well

as imposes additional requirements of its own to handle the additional factors permitted in

the ExperimentDesign sheet.

The requirements are:

1. Each of the five (5) sheets MUST be named as indicated, i.e., spelled exactly as
above, including matching case.

2. The InputSerials sheet (if used) MUST be the first sheet in the workbook; if it is
placed anywhere else, its input will NOT be used. If used, the InputSerials sheet
MUST have columns (named exactly as is, with matching spaces and case; order
of the columns does not matter): ‘StS Site’,’IOP’,’Sqft’,and ‘Source’. You can
have an optional “Value” column to place weight/value on each of the serials. All

88

other columns are ignored, so the user can place other columns with additional
information useful to the user.

3. The WhatWhere sheet (if used) MUST have columns (named exactly as is, with
matching spaces and case; order of the columns does not matter): ‘Site’,’StS
Site’,’IOP’,’Length’,’Width’,and ‘Source’. You can have an optional “Value”
column to place weight/value on each of the sticks. All other columns are ignored,
so the user can place other columns with additional information useful to the user,
e.g., TAMCN. “Length” and “Width” columns expect units in inches. The
columns are then multiplied and divided by 144 to arrive at a square footage for
the stick.

4. For the HowFar sheet, the first column MUST contain the node names (the name
of the column is not used, and can therefore be anything - “Loc” is the default).
There then MUST be a column for each node name, using the node name as the
column name, and the node name MUST NOT contain spaces. For example, if
you have a node “A” in the “Loc” (first) column, then you MUST have a
corresponding “A” column. Additionally, there MUST be an “Access” column for
each Connector used in the experiment. The column MUST be named “Access -
CnxrX,” where CnxrX is the name of the connector. Note the space before and
after the hyphen.

5. For the HowFast column, you MUST have columns named (named exactly as is,
with matching spaces and case; order of the columns does not matter):
‘From’,’To’,’Time(hrs)’.

6. For every IOP:APOD connection in the WhatWhere/InputSerials (depending on
which is used) sheets, there MUST be a complete entry (row) in the HowFast
sheet. For example, if you have an IOP of “P1” and an APODs entry of “C:D:E,”
then you must have “C/P1/<t>,” “D/P1/<t>,” and “E/P1/<t>“ rows in the
HowFast sheet, where <t> is some time, specified in hours.

7. For the ConnectorData sheet, you MUST have columns named: “Type,” “Square
Footage,” “Broken Stow Factor,” “Usable Square Footage,” “Sust. Speed - Sea
State 1,” “Sust. Speed - Sea State 2”,”Sust. Speed - Sea State 3,” and “Sust. Speed
- Sea State 4”.

8. For the ExperimentDesign sheet, you must have columns named: “Design Point”
and “SeaState.” In addition, for each Connector in the experiment, you MUST
have a column named “CnxrX Qty,” where CnxrX is the name of the connector
(no space allowed, but hyphens are permitted).

9. If “CnxrX Qty” is in ExperimentDesign, then there MUST be a CnxrX row in
ConnectorData

10. If “CnxrX Qty” is in ExperimentDesign, then there MUST be an Access column
for CnxrX in HowFar, i.e., “Access- CnxrX”

11. If there are other CnxrX factors (Broken Stow, Sust. Spd) in ExperimentDesign,
then there MUST be a “CnxrX Qty” in ExperimentDesign

89

The above requirements are the minimal that MUST be satisfied in order to start a

ConnectorFarmer/ConnectorModel run. Except for the last requirement, they are implictly

documented (by the code) in the original ConnectorModel.py file, and continued in the

ConnectorModelSEED_EMC.py file. ConnectorFarmer does some pre-validation and

checks for most of the above requirements at present, and reports failure if any of the pre-

validation checks fail.

In addition to the Connector parameters that are available as part of a design, the

user can also add CPLEX factors and Experiment-level factors to the design. These are

added to the ExperimentDesign sheet. See the accompanying test_inputs.xlsx Excel

workbook for examples.

Here is a list of the CPLEX factors, with their default values, that can be used in a

designed experiment:

• ‘threads’ : 1
• ‘workmem’ : 16000
• ‘mip_strategy_file’ : 3
• ‘timelimit’ : 28800
• ‘dettimelimit’ : 1e+70
• ‘mip_tolerances_mipgap’ : 0.1
• ‘mip_strategy_variableselect’ : 0
• ‘emphasis_memory’ : yes
• ‘mip_strategy_nodeselect’ : 1
• ‘emphasis_mip’ : 1
• ‘mip_strategy_branch’ : 1
• ‘parallel’ : 0

To use in a designed experiment, create a column with the name of the factor,

spelled exactly as above (without the single quotes), and place their values in that column.

If a CPLEX factor is not specified in the ExperimentDesign sheet, ConnectorFarmer will

look for the factor value in a cplex.config file placed in the study directory (see the example

cplex.config that comes with the ConnectorFarmer distribution). If the factor value is not

found there, then it will use the default as indicated above.

You can also include five Experiment-level factors in the design. They are, with

their default values:

90

• ‘VARLIM’ : 10000
• ‘LAYOVER’ : 0.5
• ‘MAXLOOPS’ : 10
• ‘OVERLAP’ : 1
• ‘SERIALSIZE’ : None

Note that SERIALSIZE of “None” means that you are not supplying an explicit

max serial size, therefore the code’s SerialSizeHeuristic function will be used to determine

SERIALSIZE for that run, based on the connectors available.

As with the CPLEX factors, to use in a designed experiment, create a column with

the name of the factor, spelled exactly as above (without the single quotes), and place their

values in that column.

For both the CPLEX and Experiment-level factors, if you misspell the name of the

factor, then that factor will not change in the experiment, i.e., it will be ignored.

ConnectorFarmer documents what factors were used in the individual DP*.log files in the

corresponding run directory. Here is an example from the first few lines of a DP*.log file:
09/23/2021 10:33:47: using CPLEX options: {‘threads’: 1, ‘workmem’: 16000.0, ‘workdir’: Wi
ndowsPath(‘C:/ConnectorFarmer/studies/test1/run_14’), ‘logfile’: WindowsPath(‘C:/ConnectorF
armer/studies/test1/run_14/DP14.cplex.log’), ‘mip_strategy_file’: 3, ‘timelimit’: 1800.0, ‘mip_tol
erances_mipgap’: 0.1, ‘mip_strategy_variableselect’: 0, ‘emphasis_memory’: ‘yes’, ‘mip_strateg
y_nodeselect’: 1, ‘emphasis_mip’: 1, ‘mip_strategy_branch’: 1, ‘dettimelimit’: 1e+70, ‘parallel’:
0}
09/23/2021 10:33:47: processing Experiment top_level factors from ExperimentDesign: C:\Con
nectorFarmer\studies\test1\run_14\DP14-input.xlsx
09/23/2021 10:33:47: found these top levels factors in the ExperimentDesign: {‘OVERLAP’, ‘V
ARLIM’, ‘MAXLOOPS’}
09/23/2021 10:33:47: using top level parameters: {‘VARLIM’: 10000, ‘LAYOVER’: 0.5, ‘MA
XLOOPS’: 1, ‘OVERLAP’: 1, ‘SERIALSIZE’: None}

Once you have an Excel input file properly constructed, you are ready to run

ConnectorFarmer!

F. RUNNING

As mentioned previously, the ConnectorFarmer software consists of two

components: ConnectorFarmer itself, and ConnectorMiner. Both are run individually, i.e.,

ConnectorFarmer doesn’t depend on ConnectorMiner, and vice versa. However,

ConnectorMiner does rely on certain conventions used in ConnectorFarmer, e.g., the

91

naming of the run directories, and the pickled output files rely on code in the

ConnectorFarmerSEED_EMC file to establish structure of the pickled Experiment objects.

Both ConnectorFarmer and ConnectorMiner are designed to be run from the command

line.

1. Running ConnectorFarmer

ConnectorFarmer is run from the command line and takes two required arguments:

• the absolute or relative path to the Excel spreadsheet input file
• the number of processors to use for this run

If the user only supplies the two required arguments, ConnectorFarmer will run all

design points in the ExperimentDesign sheet of the Excel input file. If the user only wants

to run specific design points, the user can supply a space-separated list of the design points

they wish to run after the first two required arguments. The design points can be names (no

spaces or hyphens) in addition to numbers; e.g., “scen14”.

First, to run ConnectorFarmer, you need to change directories to where you

installed ConnectorFarmer, using your preferred shell, e.g., DOS, powershell, or the

anaconda python prompt. In the examples below, we assume you are using the anaconda

python prompt and that you installed ConnectorFarmer to ‘C:\ConnectorFarmer’ - adjust

your path according to where you installed it.

Here is the general command line invocation of ConnectorFarmer (from the

directory where the ConnectorFarmer.py file resides):
prompt>python ConnectorFarmer.py <pathtoExcelInputfile> <numprocessors> [DPs*]

where:

• <pathtoExcelInputfile> is the absolute or relative path to the Excel spreadsheet
input file (we assume no spaces in input file name),

• <numprocessors> is the number of processors to use for this run,
• [DPs*] is an optional space-separated list of design points (DPs) (as listed in the

Design Point column of the ExperimentDesign sheet).

We recommend creating separate “study” folders, one for each designed experiment.
ConnectorFarmer uses the path of the Excel input file as the study directory, and will
overwrite any existing output.

92

(1) Test Running ConnectorFarmer

To test, we will use the test_inputs.xlsx file that accompanies this distribution as a

sample input file.

• create a ‘C:\connectorFarmer\studies\test1’ directory,
• copy test_inputs.xlsx to that directory (no spaces in file name),
• (optional) copy the cplex.config file from the ConnectorFarmer directory to your

study directory and make any desired changes,
• change directories to C:\ConnectorFarmer (or whereever you placed the set of

Connector* files),
• start ConnectorFarmer:

(base) PS c:\ConnectorFarmer> python ConnectorFarmer.py c:\ConnectorFarmer\studies\test1\tes
t_inputs.xlsx 1

Once started, in the console/command prompt window, you should start to see

scrolling lines of text. The logger in ConnectorFarmer dumps its output to the console in

addition to a “farmer.log” file in the study directory. There are also individual loggers for

each DP and they each dump their output to their individual run directories (by convention,

these run directories are created as “run_X” where X is the DP name in the study directory).

After ConnectorFarmer completes successfully, you should have two “run_X”

directories in c:\ConnectorFarmer\studies\test1\, where X runs is 14 and 15 (these are read in

from the Design Point column of the Excel input file). In each of those folders, you should

have five (5) files as described above, i.e., three DP* log files, a DP*.pkl file, and an Excel

input file specific for that DP.

2. Running ConnectorMiner

As mentioned above, ConnectorMiner is run from the command line.

ConnectorMiner takes three required arguments:

• the absolute or relative path to the Excel spreadsheet input file (no spaces in file
name),

• the absolute or relative path to the metrics file,
• the number of processors to use for this run

If the user only supplies the three required arguments, ConnectorMiner will post-

process all design points in the ExperimentDesign sheet of the Excel input file. If the user

93

only wants to post-process specific design points, the user can supply a space-separated list

of the design points they wish to post-process after the first two required arguments.

First, to run ConnectorMiner, you need to change directories to where you installed

ConnectorFarmer, using your preferred shell, e.g., DOS, powershell, or the anaconda

python prompt. In the examples below, we assume you are using the anaconda python

prompt and that you installed ConnectorFarmer to ‘C:\ConnectorFarmer’ - adjust your path

accordingly.

Here is the general command line invocation of ConnectorMiner (from the

directory where the ConnectorFarmer.py and ConnectorMiner.py files reside):
prompt>python ConnectorMiner.py <pathtoExcelInputfile> <pathtoMetricsfile> <numprocessors
> [DPs*]

where:

• <pathtoExcelInputfile> is the absolute or relative path to the Excel spreadsheet
input file (no spaces in file name),

• <pathtoMetricsfile> is the absolute or relative path to the metrics file,
• <numprocessors> is the number of processors to use for this run,
• [DPs*] is an optional space-separated list of design points (DPs).
•

For the <pathtoMetricsfile>, you can edit the provided “all-metrics.txt” file and put

in your study directory, or leave as is. It currently lists all the available metrics and output

sheets that can be generated by ConnectorMiner. Metrics that are outputted to the DP*-

output.csv file all start with the word “compute.” Metrics that create sheets in the DP*-raw-

output.xlsx Excel workbook all start with the word “sheet.” The code for both the

‘compute_’ and the ‘sheet_’ functions can be found in the ConnectorMinerFuns.py file.

Lines that do not start with either “compute” or “sheet” are ignored. You can intersperse

comments in the metrics file, if desired (conventionally, these start with “#”). Also, the

order of the “compute” metrics in the metrics file defines the order they appear in the DP*-

output.csv file (duplicate entries are ignored; the first metric encountered defines the order

of appearance).

94

(1) Test Running ConnectorMiner

To test running ConnectorMiner, you will need some output. We will assume you

tested running ConnectorFarmer as above and have a ‘C:\connectorFarmer\studies\test1’

study directory with all the “run_X” sub-directories, and the ‘test_inputs.xlsx’ is in that

study directory.

Start ConnectorMiner with the following command in the command window, from your
ConnectorFarmer install directory:

(base) PS c:\ConnectorFarmer> python ConnectorMiner.py c:\ConnectorFarmer\studies\test1\test
_inputs.xlsx all-metrics.txt 1

Once started, in the console/command prompt window, you should start to see

scrolling lines of text. The logger in ConnectorMiner dumps its output to the console. If

you use more than one processor, the output lines of text will intermix with output from

processing another DP.

After ConnectorMiner completes successfully, in those two “run_X” directories in

c:\ConnectorFarmer\studies\test1\, you should now have two additional output files as

described above, i.e., a csv output file, and an Excel output file. In the test1 folder you

should also have a “test1-alloutput.csv” file with the concatenated results from the

individual DP*-output.csv files.

That concludes this User’s Manual If there are any questions, or if you run into

issues running either ConnectorFarmer or ConnectorMiner, please send an email to

Stephen Upton at scupton@nps.edu.

3. Appendix

This section contains information on changes made to the model by the SEED Center and
Prof. Emily Craparo at NPS. They are listed in reverse chronological order, i.e., the most
recent changes are listed first.

(1) Additional changes made to the S-MIP model (7/16/2021)

Prof Emily Craparo, of the NPS OR department, made additional

recommendations/modifications to the S-MIP model. These changes are described below,

and are copied from the document “Connector Model – further ideas for IOP

mailto:scupton@nps.edu
mailto:scupton@nps.edu

95

modifications.docx” by Prof Emily Craparo (undated). Option 1 changes listed below were

implemented by Prof Craparo and Stephen Upton.

The current S-MIP formulation aims to minimize the time required for a set of

connectors to move each serial from its Port of Embarkation (POE) to the Port of

Debarkation (POD). In the real world, each serial would then need to move a certain

distance from its POD to its Initial Operational Position (IOP). This move is generally

accomplished by the serial itself (e.g., a truck on a road network). Given the quality of the

road network and distance between the POD and the IOP, it might take the serial several

days to complete this move. OAD would like the S-MIP to consider the time required to

complete this ground leg, rather than only the time required to complete the at-sea legs.

Additionally, OAD would like to specify a set of candidate PODs for each serial rather

than only a single POD. For example:

• Assume it will take a particular serial 11 hours to move from the Aerial POE
(APOE) to the Aerial POD (APOD) and 48 hours to move from the APOD to
IOP, for a total movement time of 59 hours.

• Assume it will take a particular serial 36 hours to move from the Sea POE
(SPOE) to the Sea POD (SPOD) and 10 hours to move from the SPOD to the
IOP, for a total movement time of 46 hours.

Currently, the model considers only a single POD 𝑒𝑒𝑠𝑠 for each serial. It seems

straightforward to let 𝑒𝑒𝑠𝑠 represent a set of possible PODs for each serial rather than only a

single POD, and I had initially envisioned a potential model change using this approach.

However, it is less straightforward to model the total time to transit to the IOP and the

tradeoffs between using different PODs. I therefore propose we initially try modifying the

input data to account for the POD-IOP transit (Option 1 below), rather than modifying the

model (more details available upon request).

Option 1: change the data, not the model.

Augment the network with all relevant IOP nodes; let 𝑒𝑒𝑠𝑠 represent the IOP for each

serial. At each POD, create a set of “virtual connectors” that are able to travel between the

POD and the relevant IOPs for the serials that may use that POD. In order to avoid

artificially restricting the problem at this point, create one “virtual connector” for each

serial that could conceivably use that POD. Let 𝑡𝑡𝑣𝑣,𝑖𝑖,𝑗𝑗 reflect the time required for the serials

96

to make the final transit from the POD to the IOP. (Is it the same for each type of serial? If

not, we’ll have to be careful how we model the eligibility of serials to use connectors.) Run

the model as usual; the last segment from POD to IOP will now be completed just like any

other.

• Benefits of Option 1: No model changes required, only data changes (unless
different serials have different transit times between the same POD and IOP; we
may need a small model change to address that). Model accurately captures (and
minimizes) the total time to reach the IOP.

• Drawback of Option 1: Bigger instances; more computation time required.

• Data modifications required for Option 1:

– Include IOPs in set NODES.
– Create “virtual connectors” at POD nodes and include them in set CXRS.
– Use set TRIPS to account for the fact that virtual connectors can only

transit between PODs and IOPs.
– For set CLEGS, I believe we can let each “virtual connector” only use a

single leg, to reduce model size. (Recall that we will create a “virtual
connector” for each serial that may use that POD.)

– S_TRIPS and LOADS should be modified in a manner consistent with the
above (each serial can only transit between its designated PODs and IOP;
“virtual” connectors have similar restrictions).

I believe all of these modifications can be accomplished using the following pieces

of basic information:

• For each serial, the possible PODs that serial may use.
• For each serial, the desired final IOP.
• For each (POD, IOP) pair, the transit time required for a serial to go from POD to

IOP.

Option 2: see the document, “Connector Model – further ideas for IOP
modifications.docx,” for further details.

(2) Changes made to ConnectorModelSEED.py, incorporated into
ConnectorModelSEED_EMC.py (3/21/2021)

Prof Emily Craparo, of the NPS OR department, made several modifications to the

ConnectorModelSEED file. These changes are described below.

Notes from Prof Emily Craparo (3/21/2021) Here are the main highlights:

97

• New version significantly streamlines the sets s_Trips and s_Loads. This results
in more legs being generated for a given VARLIM, which in turn should increase
solution quality, although computation time may increase along with it (I expect it
would). For a given VARLIM, you should see fewer rolling horizon iterations
with the new model than with the old, with each iteration taking longer. You may
need to play with the VARLIM values to find the “sweet spot.” You may also be
able to get away with a higher mipgap with the new model, since it is taking a
longer view and gaining some solution quality that way. Again, something to
experiment with.

• New version chooses the largest possible OVERLAP each iteration as discussed
in our emails with Matt and Chris. It does this in an iterative fashion each rolling
horizon iteration: first it nominates an OVERLAP value, then builds out the
appropriate sets (we need to know OVERLAP to do this, so we know which
positions the ships reached in the prior rolling horizon loop), counts the new
variables, and adjusts OVERLAP down if necessary, again building out the sets
and counting variables. The old code actually set the OVERLAP value for the
next iteration while building out sets, which I guess it could usually get away with
because it was not building out s_Trips and s_Loads very efficiently (and anyway,
there are no real consequences to OVERLAP being “wrong”). It makes much
more sense to do these things jointly.

• New version handles initial positions of serials correctly. The old version had a
bug where if a serial was delivered during the OVERLAP window, it was marked
as delivered and not handled in the next rolling horizon iteration (or ever again). It
also calculated the initial positions of the serials in a manner similar to how it
calculated the OVERLAP window in the prior bullet point; again, you need to
know OVERLAP in order to know what “initial” even means.

• New version reverts the DistanceLeft constraint to the expression shown in the
formulation document. The original version was using the initial positions of the
serials, which were buggy, and was expressed as an inequality. It was giving some
truly wacky behavior that stumped me for a long time. I think(???) someone
probably noticed that the model was infeasible when that constraint was
expressed as in the formulation document, and they “fixed” the problem by
modifying it as we saw in the original version of the code…but the real issue was
with the G[s] values and the Y variable values prior to the OVERLAP window
(there was a little bug with those too); the constraint was just the canary in the
coal mine.

(3) Changes made to original ConnectorModel (8/4/2020)

We made several modifications to the original ConnectorModel code. These are

contained in the ConnectorModelSEED file, many of them to handle logging and running

a specific design point, or DP. Six changes were made to the actual model code, however:

98

1. the addition of reading in Stick Values to be used when determining the value of a
composed serial (if used, the column must be named ‘Stick Value’; if not present,
the Stick Value is set to 1, to mimic the original model);

2. sorting by Site, in descending order, (the first column on the WhatWhere sheet of
the Excel spreadsheet input), after sorting by Source and StS site when composing
serials in the “MakeSerials” function;

3. adding a SerialGroup column to the Serials data structure which indicates what
serial an individual stick belongs to;

4. fixed bug on line 673 of the original code, replacing second M.Equip with
M.Ships;

5. fixed bug on line 1352 of the original code, which had misplaced parentheses; and
6. changed LAYOVER to LAYOVER/2 in two constraints.

None of the preceding changes affect the optimization formulation:

1. adds the capability to set the stick value or ‘weight’ in the input (in the original
file, the stick values are all set to 1, but the value/weight is part of the original
model formulation);

2. allows the user more control over how serials are constructed, and is performed
before model formulation;

3. is a bookkeeping addition;
4. fixed double counting of Equipment;
5. fixed bug preventing running of the NetworkMetrics function; and
6. to adjust for double counting of the LAYOVER value in two constraints.

99

LIST OF REFERENCES

Beech H, Siqi Y (2016) South China Sea: Just where exactly did China get the South
China Sea nine-dashed line from? (July 19). https://time.com/4412191/nine-dash-
line-9-south-china-sea/.

Brondorfer R, Klug T, Lamorgese L, Manning C, Reuther M, Schlechete T (2015) Recent
success stories on optimization of railway systems. Technical report ZR14-47,
Zuse Institute Berlin, https://www.zib.de/optimization#opus-year2015

Brown G, Carlyle M, Dell R, Brau J (2013) Optimizing intratheater military airlift in Iraq
and Afghanistan, Military Operations Research, 18(3), https://www.mors.org/
Publications/MOR-Journal.

Christafore RM (2017) Generating ship-to-shore bulk fuel delivery schedules for the
Marine expeditionary unit. Master’s thesis, Graduate School Operations Research,
Naval Postgraduate School, Monterey, CA

Danielson ME (2018) Scheduling amphibious connectors to deliver multiple
commodities. Master’s thesis, Graduate School Operations Research, Naval
Postgraduate School, Monterey, CA

DeMarco JFC (2021) Map of South China Sea economic exclusion zones diagram
provided to CPT Forest Sentinella via personal communication, April 6, 2021, for
use in her thesis work. Extracted from CPT Sentinella’s thesis for reuse by the
author January 26, 2022.

Department of Defense (2019) Amphibious Operations. JP 3-02 Washington, DC.
https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3_02.pdf.

Department of the Navy (2021) A Concept for Stand-in Forces, Washington, DC.
https://www.marines.mil/News/Press-Releases/Press-Release Display/Article/
2858309/marine-corps-publishes-new-document-titled-a-concept-for stand-in-
forces/

Department of the Navy (2019) Commandant’s Planning Guidance 38th Commandant of
the Marine Corps, Washington, DC. https://www.marines.mil/News/Publications/
MCPEL/Electronic-Library/Display/Article/1907265/38th-commandants-
planning-guidance/cpg/.

Headquarters, U.S. Marine Corps. (2021) Tentative Manual for Expeditionary Advanced
Base Operations. (Washington, DC). https://www.mcwl.marines.mil/TMEABO/.

100

Department of the Navy (2018) Marine Corps Doctrinal Publication (MCDP) 3,
Expeditionary Operations. Washington, DC, https://www.marines.mil/News/
Publications/MCPEL/Electronic-Library Display/Article/899839/mcdp-3/

Estrada E, Knight P (2015) Introduction to Network Theory, Euler and the Konigsberg
Bridge, A First Course in Network Theory (Oxford University Press, New York),
1–7

Ford L, Fulkerson D (1956) Maximal flow through a network, Canadian Journal of
Mathematics (8), https://www.cambridge.org/core/journals/canadianjournal-of
mathematics/article/maximal-flow-through-a-network

Freeman N (2019) Schedule Mixed Integer Program formulation, Python code, and
associated Excel worksheets provided to the SEED Center via personal
communication and shared with author July 2021.

Harris T, Ross F (1955) Fundamentals of a method for evaluating rail net capacities.
Technical report RM-1573, RAND Corporation, Santa Monica, CA. Unclassified
1999. https://apps.dtic.mil/sti/pdfs/AD0093458.pdf

Holland C, Levis J, Nuggehalli R, Santilli B, Winters J (2017) UPS Optimizes Delivery
Routes. INFORMS Journal on Applied Analytics 47(1), INFORMS PubsOnLine

Laporte G (1992) The Vehicle Routing Problem: An overview of exact and approximate
algorithms. European Journal of Operational Research (59)

Lucas T, Kelton S, Sanchez S, Sanchez P, Anderson B, “Changing the Paradigm:
Simulation, Often the Method of First Resort,” Naval Research Logistics, 62 (4),
2015, 293–303.

Middlebrook M (2001) May the 25th, The Falklands War, (Pen and Sword, United
Kingdom), 239–248

Schrijver A (2002) On the history of the transportation and maximum flow problems.
Mathematical Programing (91), https://link.springer.com/article/
10.1007%2Fs101070100259

Sentinella F (2021) Using data farming and optimization to enable analysis of concepts of
employment for surface connectors. Master’s thesis, Graduate School Operations
Research, Naval Postgraduate School, Monterey, CA

Think Defence (2021) The Atlantic Conveyor, Accessed January 26, 2022,
https://www.thinkdefence.co.uk/the-atlantic-conveyor/

Treves T (2008) United Nations Convention on the of the Sea. United Nations
Audiovisual Library of International Law, https://legal.un.org/avl/pdf/ha/uncls/
uncls_e.pdf

101

United Nations (2022), United Nations Treaties, Chapter XXI, Law of the Sea. Accessed
April 26, 2022, https://treaties.un.org/pages/
ViewDetailsIII.aspx?src=TREATY&mtdsg_no=XXI-
6&chapter=21&Temp=mtdsg3&clang=_en

Upton S (2021) ConnectorFarmer User’s Manual version 0.14, Unpublished user’s
manual, SEED Center for Data Farming, Monterey CA.

Ward PW (2008) Optimizing ship-to-shore movement for Hospital Ship humanitarian
assistance operations. Master’s Thesis, Department of OperationsResearch, Naval
Postgraduate School, Monterey, CA.

Yuen L, Ismail W, Omar K, Zirour M (2008) Vehicle routing problem: models and
solutions. Journal of Quality Measurement and Analysis 4 (1), https://core.ac.uk/

102

THIS PAGE INTENTIONALLY LEFT BLANK

103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	22Jun_Mirsch_Andrew_First8
	22Jun_Mirsch_Andrew
	I. introduction
	A. research problem
	B. RESEARCH QUESTIONS
	C. Background
	D. organization of the thesis

	II. Literature review
	A. motivation for military logistics optimization models
	B. Network theory transportation and distribution applications
	C. network theory applied to military logistics models

	III. Model formulation and related models
	A. Initial pe-mip model formulation (pe-mipv1)
	1. Sets and Indices
	2. Data [units]
	3. Decision Variables [units]
	4. Formulation

	B. PE-MIP reformulation (PE-MIPv2)
	1. Sets and Indices
	2. Data [units]
	3. Decision Variables [units]
	4. Formulation

	C. PE-MIP and s-mip comparison
	D. PE-MIP input data
	1. WhatWhere
	2. InputSerials
	3. HowFar
	4. HowFast
	5. ConnectorData
	6. ExperimentDesign

	IV. experimentation
	A. SOftware
	B. design of experiments
	C. Initial experiments and pe-mip development
	1. Description of the Two MLR Deployment Problem
	2. Computational Difficulty and Large-Scale Experiments with PE-MIPv1 and S-MIP
	3. Serial Path Filters for Reducing Computational Difficulty

	D. FINAL EXPERIMENTS
	1. Design of Final Experiment
	2. Final Experiment Results

	V. conclusions and future work
	A. TERMINATION CRITERIA
	B. INPUT FACTORS AND COMPUTATIONAL DIFFICULTY
	1. MAXK
	2. HOPS_ADD
	3. FASTPATHS

	C. OTHER MODEL ATTRIBUTES
	1. The Serial Builder Heuristic Algorithm
	2. Model Time Considerations

	D. RECOMMENDATIONS FOR FUTURE WORK
	1. Route Circulation Models
	2. Models with Adversarial Interdiction
	3. Improving the Serial Builder Heuristic Algorithm

	Appendix A. s-mip model formulation
	A. sets and indices
	B. DATA [units]
	C. Decision variables [units]
	D. formulation

	Appendix B. PE-MIP DEVELOPMENT
	A. INITIAL EXPERIMENTS WITH PE-MIPv1 AND S-MIP
	B. EXPERIMENTS USING ADDITIONAL SERIAL PATH FILTERS
	1. Experiments Using Breadth-First Search Path Length Filter
	2. Excursions in Support of the Research Sponsor and Subsequent Experimentation
	3. Experiments Using Transit Time Filters and Reformulation to an Absolute Optimality Gap

	APPendix C. connector farmer user’s manual (v0.17) (upton 2021)
	A. Change Notes
	B. Introduction
	1. Overview
	2. How ConnectorFarmer works

	C. Prerequisites
	D. ConnectorFarmer Installation
	E. Preparing to run a designed experiment
	F. Running
	1. Running ConnectorFarmer
	(1) Test Running ConnectorFarmer

	2. Running ConnectorMiner
	(1) Test Running ConnectorMiner

	3. Appendix
	(1) Additional changes made to the S-MIP model (7/16/2021)
	(2) Changes made to ConnectorModelSEED.py, incorporated into ConnectorModelSEED_EMC.py (3/21/2021)
	(3) Changes made to original ConnectorModel (8/4/2020)

	List of References
	initial distribution list

