502 research outputs found

    Electronic structure calculations and molecular dynamics simulations with linear system-size scaling

    Full text link
    We present a method for total energy minimizations and molecular dynamics simulations based either on tight-binding or on Kohn-Sham hamiltonians. The method leads to an algorithm whose computational cost scales linearly with the system size. The key features of our approach are (i) an orbital formulation with single particle wavefunctions constrained to be localized in given regions of space, and (ii) an energy functional which does not require either explicit orthogonalization of the electronic orbitals, or inversion of an overlap matrix. The foundations and accuracy of the approach and the performances of the algorithm are discussed, and illustrated with several numerical examples including Kohn-Sham hamiltonians. In particular we present calculations with tight-binding hamiltonians for diamond, graphite, a carbon linear chain and liquid carbon at low pressure. Even for a complex case such as liquid carbon -- a disordered metallic system with differently coordinated atoms -- the agreement between standard diagonalization schemes and our approach is very good. Our results establish the accuracy and reliability of the method for a wide class of systems and show that tight binding molecular dynamics simulations with a few thousand atoms are feasible on small workstations

    Daubechies wavelets as a basis set for density functional pseudopotential calculations

    Full text link
    Daubechies wavelets are a powerful systematic basis set for electronic structure calculations because they are orthogonal and localized both in real and Fourier space. We describe in detail how this basis set can be used to obtain a highly efficient and accurate method for density functional electronic structure calculations. An implementation of this method is available in the ABINIT free software package. This code shows high systematic convergence properties, very good performances and an excellent efficiency for parallel calculations.Comment: 15 pages, 11 figure

    Application of A Distributed Nucleus Approximation In Grid Based Minimization of the Kohn-Sham Energy Functional

    Full text link
    In the distributed nucleus approximation we represent the singular nucleus as smeared over a smallportion of a Cartesian grid. Delocalizing the nucleus allows us to solve the Poisson equation for theoverall electrostatic potential using a linear scaling multigrid algorithm.This work is done in the context of minimizing the Kohn-Sham energy functionaldirectly in real space with a multiscale approach. The efficacy of the approximation is illustrated bylocating the ground state density of simple one electron atoms and moleculesand more complicated multiorbital systems.Comment: Submitted to JCP (July 1, 1995 Issue), latex, 27pages, 2figure

    Object-oriented construction of a multigrid electronic-structure code with Fortran 90

    Get PDF
    We describe the object-oriented implementation of a higher-order finite-difference density-functional code in Fortran 90. Object-oriented models of grid and related objects are constructed and employed for the implementation of an efficient one-way multigrid method we have recently proposed for the density-functional electronic-structure calculations. Detailed analysis of performance and strategy of the one-way multigrid scheme will be presented.Comment: 24 pages, 6 figures, to appear in Comput. Phys. Com

    Large Scale Electronic Structure Calculations with Multigrid Acceleration

    Full text link
    We have developed a set of techniques for performing large scale ab initio calculations using multigrid accelerations and a real-space grid as a basis. The multigrid methods permit efficient calculations on ill-conditioned systems with long length scales or high energy cutoffs. The technique has been applied to systems containing up to 100 atoms, including a highly elongated diamond cell, an isolated C60_{60} molecule, and a 32-atom cell of GaN with the Ga d-states in valence. The method is well suited for implementation on both vector and massively parallel architectures.Comment: 4 pages, 1 postscript figur
    corecore