227 research outputs found

    The EM Algorithm

    Get PDF
    The Expectation-Maximization (EM) algorithm is a broadly applicable approach to the iterative computation of maximum likelihood (ML) estimates, useful in a variety of incomplete-data problems. Maximum likelihood estimation and likelihood-based inference are of central importance in statistical theory and data analysis. Maximum likelihood estimation is a general-purpose method with attractive properties. It is the most-often used estimation technique in the frequentist framework; it is also relevant in the Bayesian framework (Chapter III.11). Often Bayesian solutions are justified with the help of likelihoods and maximum likelihood estimates (MLE), and Bayesian solutions are similar to penalized likelihood estimates. Maximum likelihood estimation is an ubiquitous technique and is used extensively in every area where statistical techniques are used. --

    Mixture Trees for Modeling and Fast Conditional Sampling with Applications in Vision and Graphics

    Get PDF
    ©2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Presented at the 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 20-25 June 2005, San Diego, CA.DOI: 10.1109/CVPR.2005.224We introduce mixture trees, a tree-based data-structure for modeling joint probability densities using a greedy hierarchical density estimation scheme. We show that the mixture tree models data efficiently at multiple resolutions, and present fast conditional sampling as one of many possible applications. In particular, the development of this datastructure was spurred by a multi-target tracking application, where memory-based motion modeling calls for fast conditional sampling from large empirical densities. However, it is also suited to applications such as texture synthesis, where conditional densities play a central role. Results will be presented for both these applications

    Multispectral texture synthesis

    Get PDF
    Synthesizing texture involves the ordering of pixels in a 2D arrangement so as to display certain known spatial correlations, generally as described by a sample texture. In an abstract sense, these pixels could be gray-scale values, RGB color values, or entire spectral curves. The focus of this work is to develop a practical synthesis framework that maintains this abstract view while synthesizing texture with high spectral dimension, effectively achieving spectral invariance. The principle idea is to use a single monochrome texture synthesis step to capture the spatial information in a multispectral texture. The first step is to use a global color space transform to condense the spatial information in a sample texture into a principle luminance channel. Then, a monochrome texture synthesis step generates the corresponding principle band in the synthetic texture. This spatial information is then used to condition the generation of spectral information. A number of variants of this general approach are introduced. The first uses a multiresolution transform to decompose the spatial information in the principle band into an equivalent scale/space representation. This information is encapsulated into a set of low order statistical constraints that are used to iteratively coerce white noise into the desired texture. The residual spectral information is then generated using a non-parametric Markov Ran dom field model (MRF). The remaining variants use a non-parametric MRF to generate the spatial and spectral components simultaneously. In this ap proach, multispectral texture is grown from a seed region by sampling from the set of nearest neighbors in the sample texture as identified by a template matching procedure in the principle band. The effectiveness of both algorithms is demonstrated on a number of texture examples ranging from greyscale to RGB textures, as well as 16, 22, 32 and 63 band spectral images. In addition to the standard visual test that predominates the literature, effort is made to quantify the accuracy of the synthesis using informative and effective metrics. These include first and second order statistical comparisons as well as statistical divergence tests
    corecore