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Abstract

We introduce mixture trees, a tree-based data-structure
for modeling joint probability densities using a greedy hier-
archical density estimation scheme. We show that the mix-
ture tree models data efficiently at multiple resolutions, and
present fast conditional sampling as one of many possible
applications. In particular, the development of this data-
structure was spurred by a multi-target tracking applica-
tion, where memory-based motion modeling calls for fast
conditional sampling from large empirical densities. How-
ever, it is also suited to applications such as texture synthe-
sis, where conditional densities play a central role. Results
will be presented for both these applications.

1 Introduction

We introduce mixture trees, a novel multi-resolution ap-
proach to density estimation and modeling from large data
sets. They are similar to bumptrees [9], multi-resolution kd-
trees [8] and tree-based estimators [12] in that they can be
pre-built for a large set of training instances, and can ef-
ficiently implement a number of machine-learning related
operations. However, in addition, mixture trees are (a) built
such that one can make an conditional cut through the tree
and obtain a good conditional density estimate of the dataset
at arbitrary resolution, and (b) as a result, support fast real-
time conditional sampling from the underlying model.

As a result, mixture trees are well suited for applications
where one needs to sample from conditional densities. This
capability is central to many image processing applications,
such as image restoration, compression, and texture classi-
fication [10]. In particular, one area where one needs fast
conditional sampling is texture synthesis, in which many
successful methods have taken a conditional Markov ran-
dom field approach [2, 17]. Here pixel values in a syn-
thesized image are inferred from neighboring pixels, based
on a conditional density estimated from a training texture
patch. Another application is modeling behavior, e.g. in

[5] we need to model the motion of tracked honeybees in
response to the relative location of nearby bees. Using mix-
ture trees, these models could be learned from large data
sets and then used in a particle filter, where sampling from
a conditional motion model is a key computation.

Among the best-known hierarchical data structures com-
monly used in machine learning are kd-trees, originally de-
veloped to speed up nearest neighbor and range search by
recursively partitioning the search space [1]. It was shown
in [8] that kd-trees adorned with multi-resolution cached
statistics can enable very fast locally weighted regression
and other instance based learning algorithms. These mrkd-
trees can also be used for clustering and EM-based mix-
ture modeling [7]. Omohundro [9] showed that kd-trees
and other common hierarchical data structures, such as oct-
trees and ball-trees, could all be viewed as instances of
bumptrees. A bumptree is a general tree-based structure
where each node is associated with a function on the space,
with the constraint that each interior node’s function must
be larger than the functions in the nodes below it. Other data
structures that are suited for either high-dimensional data or
spaces with non-Euclidean metrics are vantage-point trees
[18] and the nearly identical metric trees [15].

Unlike the data structures above, the mixture trees in-
troduced in this paper are built with the additional goal of
approximating the underlying density of the data at every
level of the tree, including at internal nodes. Each node
in the tree stores the parameters of a parametric density
model, hereafter called a component. The basic idea is
illustrated in Figure 1, where 1000 samples drawn from
a three-class mixture distribution are fit by a mixture tree
with naive Bayes components. Two invariants are main-
tained throughout the entire tree:

Invariant 1: Each node’s component optimally approx-
imates the density of the data stored in its own subtree.

Invariant 2: Every internal node’s children represent an
optimal mixture density estimate of all the data points stored
in the (parent) node subtree.

These invariants are established while recursively build-
ing the tree, as is explained below in Section 2. In Figure 1
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Figure 1. 2D representation of a naive mixture tree, fit to 1000 samples drawn from mixture of 3 Gaussians. The structure of the tree is
shown on the left : the root models all 1000 samples by a naive Bayes component with mean (-0.5,-0.4). The two nodes below the root
model subsets of size 707 and 293, respectively. The largest of those two nodes is split up once more, and the three leaves of the tree
recover the three mixture components, which had weights of 0.4, 0.3, and 0.3.

we used naive Bayes densities for the mixture tree compo-
nents, but any type of component density can be used. To
date we have used spherical normal densities, naive Bayes
(diagonal multivariate normal) densities, and probabilistic
PCA densities [14, 11] as the mixture components.

Even when the tree is grown until every leaf contains a
single sample, one can arbitrarily cut the tree and obtain a
good approximation to the underlying density, where a cut
is defined as pruning subtrees below a certain level. This is
in contrast to kd-tree based data structures, where the data
is partitioned in a manner that is not related to any approxi-
mation principle, but rather for computational convenience.
In section 2 it will become clear how mixture trees are fun-
damentally different from kd-trees in this respect.

Mixture trees are thus similar to general mixtures, but
maintain the mixture components in a hierarchical data
structure. This is similar to tree-structured vector quantiza-
tion (TSVQ) [3], which has been used in texture synthesis
[17] to speed up conditional sampling. However, we gen-
eralize TSVQ in that any parametric density type can be
used as the mixture component. When using probabilistic
PCA components [14, 11], mixture trees model the data in
a manner similar to many other approaches that tessellate
the space with subspace approximations to the data [4, 13].
PPCA mixture trees offer the additional advantage of being
able to cut the tree arbitrarily to recover a different subspace
tessellation. This also sets it apart from the bottom up hi-
erarchical mixtures described in [16]. Finally, mixture trees
are different from the “mixtures of trees” in [6], which are
standard mixtures using a tree-structured Bayes network.

2 Building Mixture Trees

Algorithm 1 Building a mixture tree
given: sample set (X0), minimum number of samples in a
node (rmin), branching factor (k), and chosen parametric
form for component densities (P (x|θ))
do
1. estimate the root component θ0 using all samples X0

2. starting with the root, recursively create all nodes n:
given: node component θn with assigned samples Xn

do
a) if |Xn| < rmin then the node is declared a leaf:
n := Leaf [θn, Xn]
b) else, using EM, estimate the mixture∑k

i=1 πiP (x|θi) from the samples Xn

c) create k children ci and redistribute the samples Xn

among them: for each sample xnj , randomly choose
a child ci according to the class posteriors

P (i|xnj , {πi, θi}) =
πiP (xnj |θi)∑k

i′=1 πi′P (xnj |θi′)
(1)

d) create n as an internal node with children ci, n :=
Node[θn, {πi, ci}]
e) recurse on each of the children ci

Several greedy algorithms can be considered for build-
ing mixture trees. We implemented a top-down method,
given as Algorithm 1. First the root node component is es-
timated, satisfying invariant 1 for the root. Then, we re-
cursively estimate the mixtures at each internal node using



expectation-maximization (EM), satisfying invariant 2. The
recursion bottoms out when a node contains less than a min-
imum amount of data points.

The key step in the algorithm is step 2.c: after a call to
EM, the data is distributed probabilistically among the chil-
dren, according to the class posterior estimates, as given by
(1). This (a) implements a multi-resolution divide-and con-
quer strategy to estimate the density at a higher resolution,
and (b) equally important, approximately ensures invariant
1 for the children ci of node n. It can be proved that for
an infinite number of samples that are actually distributed
as

∑k
i=1 πiP (x|θi), the samples assigned to child ci in this

way will be distributed according to P (x|θi), the ith mix-
ture component assigned to child ci. When these assump-
tions are violated, the invariant holds only approximately.

Another key point to note is that, after step 2.b, there are
two estimates for the density of the sample Xn, as we have:

Xn ∼ P (x|θn) and Xn ∼
k∑

i=1

πiP (x|θi)

In other words, the samples Xn assigned to the subtree
rooted at node n and stored at the leaves of the subtree, are
modeled in two ways at node n: as one component P (x|θn),
the parameters θn of which are stored at the node n itself,
and at a higher resolution as a mixture of the child com-
ponents P (x|θi). This holds recursively: if the subtree is
grown recursively below the children ci, every cut of the
subtree below n is an approximation of the empirical den-
sity of Xn, with the finest resolution obtained by the leaves
mixture. The mixture weights of such a cut is obtained re-
cursively: simply multiply all the mixture weights stored in
the nodes on the path to the root (which has weight 1).

3 Fast Conditional Sampling

One application where mixture trees excel is fast condi-
tional sampling (FCS) from a conditional density. If, for
two subsets x and y of the variables, the component den-
sity P (x, y) can be factored conveniently according to the
chain rule P (x, y) = P (x)P (y|x), then we can easily ob-
tain the conditional density P (y|x̄) for any given value x̄
for x. In fact, under those assumptions any mixture can
easily be converted to a conditional density, which is itself
a mixture (in what follows we use the notational shortcut
Pi(.) = P (.|θi)):

P (y|x̄) =
∑

i πiPi(x̄)Pi(y|x̄)∑
i πiPi(x̄)

=
∑

i

π′
iPi(y|x̄)

i.e., again a mixture with new, x̄ specific components
Pi(y|x̄) and mixture weights π′

i:

π′
i

∆=
πiPi(x̄)∑
j πjPj(x̄)

(2)

When factored component densities Pi(x, y) = Pi(x)Pi(y)
are used, the new components Pi(y|x̄) = Pi(y) are triv-
ially obtained and do not depend on x̄. This is the case for
naive Bayes densities, where one can easily condition on an
arbitrary subset of the variables.

Algorithm 2 Fast Conditional Sampling
given: mixture tree (rooted at node n), conditioning vari-
ables (x̄), and a threshold t
do
1. for each child ci of n, compute mixture weight π′

i (2)
2. choose ci with probability π′

i

3. if π′
i < t or ci is a leaf, sample y ∼ Pi(y|x̄, θi)

4. else n := i, goto step 1.

While the above holds for arbitrary mixtures, a mix-
ture tree allows for very fast sampling from P (y|x̄) by
adaptively approximating the conditional density P (y|x̄),
increasing the resolution of the approximation where the
value x̄ of x induces a large probability mass over y. In-
deed, the key computational shortcut that a mixture tree af-
fords us, is that we can cut the tree arbitrarily to obtain the
conditional mixture. In particular, we can approximate an
entire subtree by its root component whenever π′

i falls be-
low a threshold t. Algorithm 2 describes the pseudo-code
for the FCS algorithm.

4 Fast Approximate Nearest Neighbors

Another closely related application of mixture trees is
fast approximate nearest neighbor search (FANN). Given
a data point z̄, we want to find the sample point z from
the original dataset that is closest to z̄. Often, it is eas-
ier to find a sample point that is not the closest yet close
enough to z̄. Mixture trees provide one such mechanism:
we first find the mixture component that z̄ is most likely to
belong, and then search exhaustively for the closest point
among the sample points contained in this component. The
search for the most appropriate mixture component is com-
putationally similar to the special case of fast conditional
sampling where all variables are known. Specifically, we
need to find the mixture component k that maximizes the
mixture weight πkP (z̄|θk).

We can perform this search quickly by hierarchically re-
fining the resolution at which to search for the best mix-
ture component. Starting at the root, we recursively pick
the component with the maximum mixture weight until ei-
ther the mixture weight falls below the desired threshold
or we reach a leaf node, where we perform the exhaus-
tive search. Thus, mixture trees can be used as a hybrid
parametric/memory-based model, where the data-driven cut
through the tree adaptively shapes the approximation to be
closer to the original data where the extra work is warranted.



Figure 2. A dancer-follower pair of honeybees tracked in a video
stream. The dancing bee (right) and the potential recruits (left)
are being tracked. To track these bees effectively, a model for the
follower bee motion relative to the dancer bee location can be built
from the collected tracks.

5 Modeling Behavioral Data

We applied mixture trees to model the behavior of in-
sects in order to more accurately track them as well as ana-
lyze their behavior. E.g. honeybees execute a complicated
dance in order to communicate location and distance to a
food source. Figure 2 shows a dancer-follower pair of bees
being tracked in video. We obtained a database of 5567
pairs of relative dancer locations and the resulting follower
motions (3 DOF each) using appearance based particle fil-
ters. The mixture tree for this data is shown in Figure 5. The
first panel shows the original data, projected onto 2 dimen-
sions, the relative XY position of the dancer bee. The center
of the crescent-shaped distribution is the location of the fol-
lower bee (0,0). In the result shown, we used rmin = 10
and branching factor k = 2.

We used the honey bee dataset to evaluate fast condi-
tional sampling, showing that we are able to sample from
the distribution in real time. Figure 3 shows that FCS speeds
up conditional sampling by orders of magnitude. We sam-
pled y given 10000 randomly generated x points and re-
peated the experiments with seven different threshold val-
ues for π′

i (conditional mixture weights). The sampling rate
obtained without any hierarchical information, i.e. using
all 855 leaves of the mixture tree is 215 samples/sec on
average. In contrast, when sampling using FCS, the aver-
age number of mixture components varies between 3.31 and
69.32, while the sampling rate is between 2538 and 83333
samples/sec. Hence, FCS is able to achieve a speed up of
11.92 to 368.73 times depending upon the desired accuracy
of the distribution of samples.

Finally, we evaluated the modeling power of mixture
trees compared to other modeling techniques by compar-

t Mixture size Sampling rate Speed up

0.5% 69.32 2538 11.92
1% 49.84 3968 18.63
2% 32.18 6536 30.98
5% 16.02 13389 63.45

10% 8.64 28571 132.89
20% 4.97 47619 226.76
40% 3.31 83333 368.73

Figure 3. Regular conditional sampling vs. FCS: t is the thresh-
old, mixture size is the average number of active mixture compo-
nents for a given t, sampling rate is the average number of sam-
ples/sec, and speed up is the ratio of FCS sampling rate to regular-
conditional-sampling rate.

Figure 4. Left: 4D mixture projected into 2D; Middle: mixture
tree 1 (leaves) which is built upon the samples from the original
mixture 1 (10 classes, KLD=0.014416); Right: EM-based mixture
1 (10 classes, KLD=0.009088).

ing it with EM. First, we have chosen two synthetic Gaus-
sian mixtures shown in the left panel of figures 4 and
6. From each distribution, 5000 samples are generated to
which mixture trees and EM are applied to estimate the mix-
tures. The resulting mixtures are shown in the middle and
right panels respectively. Additionally, we have measured
Kullback-Leibler divergence (KLD) between the original
and the estimated mixtures where each KLD is shown be-
low the corresponding panels. As shown in figures 6 and
4, mixture tree estimates are comparable to EM-based esti-
mates. All of the obtained KLD results are smaller than 0.1
(0.014,0.009,0.062,0.065), showing that mixture tree and
EM are both model the data well. The results indicate that
mixture trees model data effectively, with the additional ad-
vantage that they can be used for fast conditional sampling.

6 Texture Synthesis

We have also experimented with texture synthesis as an
application of FCS and FANN. Given an input image of a
texture, the goal of texture synthesis is to generate a poten-
tially larger output image of the same texture. We use mix-
ture trees to model the distribution of pixel neighborhoods



in the input image. Each component of the mixture is mod-
eled using PPCA. For synthesis, output neighborhoods are
constructed by sampling from the mixture tree. We have
experimented with two techniques for synthesis: (i) con-
ditional sampling, given partial neighborhoods (uses FCS)
and (ii) nearest neighbor search and blending (uses FANN).
Both approaches are illustrated in Figure 7.

In (i), given a portion of the neighborhood, we synthe-
size the remaining portion by performing conditional sam-
pling using our FCS algorithm. Starting with random noise,
we synthesize the output neighborhood-by-neighborhood in
scan-line order: for each neighborhood, we sample y given
x̄ and update the y-portion of the output (Figure 7a). We
allow successive neighborhoods to overlap with each other
to ensure consistency between them. Figure 7c shows the
synthesis result using this approach.

In (ii), we synthesize the output texture by refining it iter-
atively, starting with random noise. During every iteration,
we consider output neighborhoods in scan-line order and
for each such neighborhood, find the closest input sample
using FANN. The output is then updated by blending this
input (neighborhood) sample with the output. We run mul-
tiple iterations – two to three are usually enough – of this
process to obtain the final output texture. Figure 7d shows
the synthesis result using this approach.

The synthesized textures in Figure 7 are 128 × 128 in
size. They have been synthesized using neighborhoods as
large as 21 × 21 pixels. Even though the resulting sam-
ple points reside in a very high dimensional space (1323
dimensions with three color channels), we are still able to
synthesize our results fairly quickly – each iteration takes 11
seconds and 14 seconds using FCS and FANN respectively.

7 Conclusion

Mixture trees are elegant, easy to build, and very fast at
run-time, especially when used in a conditional sampling
context. They improve on mrkd-trees and generalize tree-
structured vector-quantization. We have presented a recur-
sive top-down algorithm that enforces the two mixture tree
invariants by probabilistically re-distributing the data of a
node among its children. The resulting tree models data
accurately and can be cut arbitrarily to yield a good ap-
proximation to the underlying data density, which is the key
property used in fast conditional sampling.

Opportunities for future work are a more thorough, quan-
titative comparison between mixture trees and competing
data structures, as well as research into automatic, model-
selection-based criteria to stop growing the tree.
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Figure 5. Mixture tree created from behavioral data collected from dancer-follower pairs of honeybees. Left: original 6D data projected
in 2D, the relative XY location of the dancer bee; Middle: the leaves mixture. Darker covariance ellipses have more weight; Right: 5567
samples from the leaves, showing we are able to accurately model the original density.

Figure 6. Evaluating the modeling power of mixture trees, see text. Left: Original mixture 2 (130 classes); Middle: Mixture tree 2 (leaves,
64 classes, KLD=0.061614); Right: EM-based mixture 2 (64 classes, KLD=0.065000).

Output Texture

x

Neighborhood

y

_

Figure 7. Texture Synthesis. (a) Synthesis using FCS: x̄ and y are respectively the known and unknown portions of a neighborhood, (b)
input texture, (c) texture synthesized using FCS, and (d) texture synthesized using FANN. See also text.


