Mixture Trees for Modeling and Fast Conditional Sampling with Applications in Vision and Graphics

Abstract

©2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Presented at the 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 20-25 June 2005, San Diego, CA.DOI: 10.1109/CVPR.2005.224We introduce mixture trees, a tree-based data-structure for modeling joint probability densities using a greedy hierarchical density estimation scheme. We show that the mixture tree models data efficiently at multiple resolutions, and present fast conditional sampling as one of many possible applications. In particular, the development of this datastructure was spurred by a multi-target tracking application, where memory-based motion modeling calls for fast conditional sampling from large empirical densities. However, it is also suited to applications such as texture synthesis, where conditional densities play a central role. Results will be presented for both these applications

    Similar works