CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Mixture Trees for Modeling and Fast Conditional Sampling with Applications in Vision and Graphics
Authors
Frank Dellaert
Vivek Kwatra
Sang Min Oh
Publication date
1 January 2005
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Abstract
©2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Presented at the 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 20-25 June 2005, San Diego, CA.DOI: 10.1109/CVPR.2005.224We introduce mixture trees, a tree-based data-structure for modeling joint probability densities using a greedy hierarchical density estimation scheme. We show that the mixture tree models data efficiently at multiple resolutions, and present fast conditional sampling as one of many possible applications. In particular, the development of this datastructure was spurred by a multi-target tracking application, where memory-based motion modeling calls for fast conditional sampling from large empirical densities. However, it is also suited to applications such as texture synthesis, where conditional densities play a central role. Results will be presented for both these applications
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Scholarly Materials And Research @ Georgia Tech
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:smartech.gatech.edu:1853/3...
Last time updated on 21/06/2012