349 research outputs found

    Parallel and Distributed Performance of a Depth Estimation Algorithm

    Get PDF
    Expansion of dataset sizes and increasing complexity of processing algorithms have led to consideration of parallel and distributed implementations. The rationale for distributing the computational load may be to thin-provision computational resources, to accelerate data processing rate, or to efficiently reuse already available but otherwise idle computational resources. Whatever the rationale, an efficient solution of this type brings with it questions of data distribution, job partitioning, reliability, and robustness. This paper addresses the first two of these questions in the context of a local cluster-computing environment. Using the CHRT depth estimator, it considers active and passive data distribution and their effect on data throughput, focusing mainly on the compromises required to maintain minimal communications requirements between nodes. As metric, the algorithm considers the overall computation time for a given dataset (i.e., the time lag that a user would experience), and shows that although there are significant speedups to be had by relatively simple modifications to the algorithm, there are limitations to the parallelism that can be achieved efficiently, and a balance between inter-node parallelism (i.e., multiple nodes running in parallel) and intranode parallelism (i.e., multiple threads within one node) for most efficient utilization of available resources

    OccCasNet: Occlusion-aware Cascade Cost Volume for Light Field Depth Estimation

    Full text link
    Light field (LF) depth estimation is a crucial task with numerous practical applications. However, mainstream methods based on the multi-view stereo (MVS) are resource-intensive and time-consuming as they need to construct a finer cost volume. To address this issue and achieve a better trade-off between accuracy and efficiency, we propose an occlusion-aware cascade cost volume for LF depth (disparity) estimation. Our cascaded strategy reduces the sampling number while keeping the sampling interval constant during the construction of a finer cost volume. We also introduce occlusion maps to enhance accuracy in constructing the occlusion-aware cost volume. Specifically, we first obtain the coarse disparity map through the coarse disparity estimation network. Then, the sub-aperture images (SAIs) of side views are warped to the center view based on the initial disparity map. Next, we propose photo-consistency constraints between the warped SAIs and the center SAI to generate occlusion maps for each SAI. Finally, we introduce the coarse disparity map and occlusion maps to construct an occlusion-aware refined cost volume, enabling the refined disparity estimation network to yield a more precise disparity map. Extensive experiments demonstrate the effectiveness of our method. Compared with state-of-the-art methods, our method achieves a superior balance between accuracy and efficiency and ranks first in terms of MSE and Q25 metrics among published methods on the HCI 4D benchmark. The code and model of the proposed method are available at https://github.com/chaowentao/OccCasNet

    An Explicit Method for Fast Monocular Depth Recovery in Corridor Environments

    Full text link
    Monocular cameras are extensively employed in indoor robotics, but their performance is limited in visual odometry, depth estimation, and related applications due to the absence of scale information.Depth estimation refers to the process of estimating a dense depth map from the corresponding input image, existing researchers mostly address this issue through deep learning-based approaches, yet their inference speed is slow, leading to poor real-time capabilities. To tackle this challenge, we propose an explicit method for rapid monocular depth recovery specifically designed for corridor environments, leveraging the principles of nonlinear optimization. We adopt the virtual camera assumption to make full use of the prior geometric features of the scene. The depth estimation problem is transformed into an optimization problem by minimizing the geometric residual. Furthermore, a novel depth plane construction technique is introduced to categorize spatial points based on their possible depths, facilitating swift depth estimation in enclosed structural scenarios, such as corridors. We also propose a new corridor dataset, named Corr\_EH\_z, which contains images as captured by the UGV camera of a variety of corridors. An exhaustive set of experiments in different corridors reveal the efficacy of the proposed algorithm.Comment: 10 pages, 8 figures. arXiv admin note: text overlap with arXiv:2111.08600 by other author

    SAAM: Stealthy Adversarial Attack on Monocular Depth Estimation

    Full text link
    In this paper, we investigate the vulnerability of MDE to adversarial patches. We propose a novel \underline{S}tealthy \underline{A}dversarial \underline{A}ttacks on \underline{M}DE (SAAM) that compromises MDE by either corrupting the estimated distance or causing an object to seamlessly blend into its surroundings. Our experiments, demonstrate that the designed stealthy patch successfully causes a DNN-based MDE to misestimate the depth of objects. In fact, our proposed adversarial patch achieves a significant 60\% depth error with 99\% ratio of the affected region. Importantly, despite its adversarial nature, the patch maintains a naturalistic appearance, making it inconspicuous to human observers. We believe that this work sheds light on the threat of adversarial attacks in the context of MDE on edge devices. We hope it raises awareness within the community about the potential real-life harm of such attacks and encourages further research into developing more robust and adaptive defense mechanisms

    Lightweight Monocular Depth Estimation via Token-Sharing Transformer

    Full text link
    Depth estimation is an important task in various robotics systems and applications. In mobile robotics systems, monocular depth estimation is desirable since a single RGB camera can be deployable at a low cost and compact size. Due to its significant and growing needs, many lightweight monocular depth estimation networks have been proposed for mobile robotics systems. While most lightweight monocular depth estimation methods have been developed using convolution neural networks, the Transformer has been gradually utilized in monocular depth estimation recently. However, massive parameters and large computational costs in the Transformer disturb the deployment to embedded devices. In this paper, we present a Token-Sharing Transformer (TST), an architecture using the Transformer for monocular depth estimation, optimized especially in embedded devices. The proposed TST utilizes global token sharing, which enables the model to obtain an accurate depth prediction with high throughput in embedded devices. Experimental results show that TST outperforms the existing lightweight monocular depth estimation methods. On the NYU Depth v2 dataset, TST can deliver depth maps up to 63.4 FPS in NVIDIA Jetson nano and 142.6 FPS in NVIDIA Jetson TX2, with lower errors than the existing methods. Furthermore, TST achieves real-time depth estimation of high-resolution images on Jetson TX2 with competitive results.Comment: ICRA 202

    Light Field Depth Estimation Based on Stitched-EPI

    Full text link
    Depth estimation is one of the most essential problems for light field applications. In EPI-based methods, the slope computation usually suffers low accuracy due to the discretization error and low angular resolution. In addition, recent methods work well in most regions but often struggle with blurry edges over occluded regions and ambiguity over texture-less regions. To address these challenging issues, we first propose the stitched-EPI and half-stitched-EPI algorithms for non-occluded and occluded regions, respectively. The algorithms improve slope computation by shifting and concatenating lines in different EPIs but related to the same point in 3D scene, while the half-stitched-EPI only uses non-occluded part of lines. Combined with the joint photo-consistency cost proposed by us, the more accurate and robust depth map can be obtained in both occluded and non-occluded regions. Furthermore, to improve the depth estimation in texture-less regions, we propose a depth propagation strategy that determines their depth from the edge to interior, from accurate regions to coarse regions. Experimental and ablation results demonstrate that the proposed method achieves accurate and robust depth maps in all regions effectively.Comment: 15 page

    Neural Contourlet Network for Monocular 360 Depth Estimation

    Full text link
    For a monocular 360 image, depth estimation is a challenging because the distortion increases along the latitude. To perceive the distortion, existing methods devote to designing a deep and complex network architecture. In this paper, we provide a new perspective that constructs an interpretable and sparse representation for a 360 image. Considering the importance of the geometric structure in depth estimation, we utilize the contourlet transform to capture an explicit geometric cue in the spectral domain and integrate it with an implicit cue in the spatial domain. Specifically, we propose a neural contourlet network consisting of a convolutional neural network and a contourlet transform branch. In the encoder stage, we design a spatial-spectral fusion module to effectively fuse two types of cues. Contrary to the encoder, we employ the inverse contourlet transform with learned low-pass subbands and band-pass directional subbands to compose the depth in the decoder. Experiments on the three popular panoramic image datasets demonstrate that the proposed approach outperforms the state-of-the-art schemes with faster convergence. Code is available at https://github.com/zhijieshen-bjtu/Neural-Contourlet-Network-for-MODE.Comment: IEEE Transactions on Circuits and Systems for Video Technolog

    Adversarial Attacks on Monocular Pose Estimation

    Full text link
    Advances in deep learning have resulted in steady progress in computer vision with improved accuracy on tasks such as object detection and semantic segmentation. Nevertheless, deep neural networks are vulnerable to adversarial attacks, thus presenting a challenge in reliable deployment. Two of the prominent tasks in 3D scene-understanding for robotics and advanced drive assistance systems are monocular depth and pose estimation, often learned together in an unsupervised manner. While studies evaluating the impact of adversarial attacks on monocular depth estimation exist, a systematic demonstration and analysis of adversarial perturbations against pose estimation are lacking. We show how additive imperceptible perturbations can not only change predictions to increase the trajectory drift but also catastrophically alter its geometry. We also study the relation between adversarial perturbations targeting monocular depth and pose estimation networks, as well as the transferability of perturbations to other networks with different architectures and losses. Our experiments show how the generated perturbations lead to notable errors in relative rotation and translation predictions and elucidate vulnerabilities of the networks.Comment: Accepted at the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022

    ADU-Depth: Attention-based Distillation with Uncertainty Modeling for Depth Estimation

    Full text link
    Monocular depth estimation is challenging due to its inherent ambiguity and ill-posed nature, yet it is quite important to many applications. While recent works achieve limited accuracy by designing increasingly complicated networks to extract features with limited spatial geometric cues from a single RGB image, we intend to introduce spatial cues by training a teacher network that leverages left-right image pairs as inputs and transferring the learned 3D geometry-aware knowledge to the monocular student network. Specifically, we present a novel knowledge distillation framework, named ADU-Depth, with the goal of leveraging the well-trained teacher network to guide the learning of the student network, thus boosting the precise depth estimation with the help of extra spatial scene information. To enable domain adaptation and ensure effective and smooth knowledge transfer from teacher to student, we apply both attention-adapted feature distillation and focal-depth-adapted response distillation in the training stage. In addition, we explicitly model the uncertainty of depth estimation to guide distillation in both feature space and result space to better produce 3D-aware knowledge from monocular observations and thus enhance the learning for hard-to-predict image regions. Our extensive experiments on the real depth estimation datasets KITTI and DrivingStereo demonstrate the effectiveness of the proposed method, which ranked 1st on the challenging KITTI online benchmark.Comment: accepted by CoRL 202

    Learning based Deep Disentangling Light Field Reconstruction and Disparity Estimation Application

    Full text link
    Light field cameras have a wide range of uses due to their ability to simultaneously record light intensity and direction. The angular resolution of light fields is important for downstream tasks such as depth estimation, yet is often difficult to improve due to hardware limitations. Conventional methods tend to perform poorly against the challenge of large disparity in sparse light fields, while general CNNs have difficulty extracting spatial and angular features coupled together in 4D light fields. The light field disentangling mechanism transforms the 4D light field into 2D image format, which is more favorable for CNN for feature extraction. In this paper, we propose a Deep Disentangling Mechanism, which inherits the principle of the light field disentangling mechanism and further develops the design of the feature extractor and adds advanced network structure. We design a light-field reconstruction network (i.e., DDASR) on the basis of the Deep Disentangling Mechanism, and achieve SOTA performance in the experiments. In addition, we design a Block Traversal Angular Super-Resolution Strategy for the practical application of depth estimation enhancement where the input views is often higher than 2x2 in the experiments resulting in a high memory usage, which can reduce the memory usage while having a better reconstruction performance
    corecore