Light Field Depth Estimation Based on Stitched-EPI

Abstract

Depth estimation is one of the most essential problems for light field applications. In EPI-based methods, the slope computation usually suffers low accuracy due to the discretization error and low angular resolution. In addition, recent methods work well in most regions but often struggle with blurry edges over occluded regions and ambiguity over texture-less regions. To address these challenging issues, we first propose the stitched-EPI and half-stitched-EPI algorithms for non-occluded and occluded regions, respectively. The algorithms improve slope computation by shifting and concatenating lines in different EPIs but related to the same point in 3D scene, while the half-stitched-EPI only uses non-occluded part of lines. Combined with the joint photo-consistency cost proposed by us, the more accurate and robust depth map can be obtained in both occluded and non-occluded regions. Furthermore, to improve the depth estimation in texture-less regions, we propose a depth propagation strategy that determines their depth from the edge to interior, from accurate regions to coarse regions. Experimental and ablation results demonstrate that the proposed method achieves accurate and robust depth maps in all regions effectively.Comment: 15 page

    Similar works

    Full text

    thumbnail-image

    Available Versions