2,321 research outputs found

    Vertex-disjoint triangles in K1,t-free graphs with minimum degree at least t

    Get PDF
    AbstractA graph is said to be K1,t-free if it does not contain an induced subgraph isomorphic to K1,t. Let h(t,k) be the smallest integer m such that every K1,t-free graph of order greater than m and with minimum degree at least t contains k vertex-disjoint triangles. In this paper, we obtain a lower bound of h(t,k) by a constructive method. According to the lower bound, we totally disprove the conjecture raised by Hong Wang [H. Wang, Vertex-disjoint triangles in claw-free graphs with minimum degree at least three, Combinatorica 18 (1998) 441–447]. We also obtain an upper bound of h(t,k) which is related to Ramsey numbers R(3,t). In particular, we prove that h(4,k)=9(kβˆ’1) and h(5,k)=14(kβˆ’1)

    Many TT copies in HH-free graphs

    Full text link
    For two graphs TT and HH with no isolated vertices and for an integer nn, let ex(n,T,H)ex(n,T,H) denote the maximum possible number of copies of TT in an HH-free graph on nn vertices. The study of this function when T=K2T=K_2 is a single edge is the main subject of extremal graph theory. In the present paper we investigate the general function, focusing on the cases of triangles, complete graphs, complete bipartite graphs and trees. These cases reveal several interesting phenomena. Three representative results are: (i) ex(n,K3,C5)≀(1+o(1))32n3/2,ex(n,K_3,C_5) \leq (1+o(1)) \frac{\sqrt 3}{2} n^{3/2}, (ii) For any fixed mm, sβ‰₯2mβˆ’2s \geq 2m-2 and tβ‰₯(sβˆ’1)!+1t \geq (s-1)!+1 , ex(n,Km,Ks,t)=Θ(nmβˆ’(m2)/s)ex(n,K_m,K_{s,t})=\Theta(n^{m-\binom{m}{2}/s}) and (iii) For any two trees HH and TT, ex(n,T,H)=Θ(nm)ex(n,T,H) =\Theta (n^m) where m=m(T,H)m=m(T,H) is an integer depending on HH and TT (its precise definition is given in Section 1). The first result improves (slightly) an estimate of Bollob\'as and Gy\H{o}ri. The proofs combine combinatorial and probabilistic arguments with simple spectral techniques

    Triangles in graphs without bipartite suspensions

    Full text link
    Given graphs TT and HH, the generalized Tur\'an number ex(n,T,H)(n,T,H) is the maximum number of copies of TT in an nn-vertex graph with no copies of HH. Alon and Shikhelman, using a result of Erd\H os, determined the asymptotics of ex(n,K3,H)(n,K_3,H) when the chromatic number of HH is greater than 3 and proved several results when HH is bipartite. We consider this problem when HH has chromatic number 3. Even this special case for the following relatively simple 3-chromatic graphs appears to be challenging. The suspension H^\widehat H of a graph HH is the graph obtained from HH by adding a new vertex adjacent to all vertices of HH. We give new upper and lower bounds on ex(n,K3,H^)(n,K_3,\widehat{H}) when HH is a path, even cycle, or complete bipartite graph. One of the main tools we use is the triangle removal lemma, but it is unclear if much stronger statements can be proved without using the removal lemma.Comment: New result about path with 5 edges adde

    Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies

    Get PDF
    We settle a problem of Havel by showing that there exists an absolute constant d such that if G is a planar graph in which every two distinct triangles are at distance at least d, then G is 3-colorable. In fact, we prove a more general theorem. Let G be a planar graph, and let H be a set of connected subgraphs of G, each of bounded size, such that every two distinct members of H are at least a specified distance apart and all triangles of G are contained in \bigcup{H}. We give a sufficient condition for the existence of a 3-coloring phi of G such that for every B\in H, the restriction of phi to B is constrained in a specified way.Comment: 26 pages, no figures. Updated presentatio

    Bidimensionality and Geometric Graphs

    Full text link
    In this paper we use several of the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexponential time parameterized algorithms for problems on classes of graphs which are not minor closed, but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time parameterized algorithms for Feedback Vertex Set, Vertex Cover, Connected Vertex Cover, Diamond Hitting Set, on map graphs and unit disk graphs, and for Cycle Packing and Minimum-Vertex Feedback Edge Set on unit disk graphs. Our results are based on the recent decomposition theorems proved by Fomin et al [SODA 2011], and our algorithms work directly on the input graph. Thus it is not necessary to compute the geometric representations of the input graph. To the best of our knowledge, these results are previously unknown, with the exception of the EPTAS and a subexponential time parameterized algorithm on unit disk graphs for Vertex Cover, which were obtained by Marx [ESA 2005] and Alber and Fiala [J. Algorithms 2004], respectively. We proceed to show that our approach can not be extended in its full generality to more general classes of geometric graphs, such as intersection graphs of unit balls in R^d, d >= 3. Specifically we prove that Feedback Vertex Set on unit-ball graphs in R^3 neither admits PTASs unless P=NP, nor subexponential time algorithms unless the Exponential Time Hypothesis fails. Additionally, we show that the decomposition theorems which our approach is based on fail for disk graphs and that therefore any extension of our results to disk graphs would require new algorithmic ideas. On the other hand, we prove that our EPTASs and subexponential time algorithms for Vertex Cover and Connected Vertex Cover carry over both to disk graphs and to unit-ball graphs in R^d for every fixed d
    • …
    corecore