

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Vertex-disjoint triangles in $K_{1,t}$ -free graphs with minimum degree at least t

Xin Zhang, Na Li, Jian-Liang Wu*, Jin Yan

School of Mathematics, Shandong University, Jinan, 250100, China

ARTICLE INFO

Article history: Received 31 December 2009 Received in revised form 5 June 2010 Accepted 7 June 2010 Available online 5 July 2010

Keywords: K_{1,t}-free graph Disjoint Triangle Ramsey number

ABSTRACT

A graph is said to be $K_{1,t}$ -free if it does not contain an induced subgraph isomorphic to $K_{1,t}$. Let h(t,k) be the smallest integer m such that every $K_{1,t}$ -free graph of order greater than m and with minimum degree at least t contains k vertex-disjoint triangles. In this paper, we obtain a lower bound of h(t,k) by a constructive method. According to the lower bound, we totally disprove the conjecture raised by Hong Wang [H. Wang, Vertex-disjoint triangles in claw-free graphs with minimum degree at least three, Combinatorica 18 (1998) 441–447]. We also obtain an upper bound of h(t,k) which is related to Ramsey numbers R(3,t). In particular, we prove that h(4,k) = 9(k-1) and h(5,k) = 14(k-1).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs are finite, simple and undirected. Let G be a graph. We use V(G), E(G), $\delta(G)$ and $\Delta(G)$ to denote the vertex set, the edge set, the minimum degree and the maximum degree of G. If $uv \in E(G)$, then u is said to be the neighbor of v. We use N(v) to denote the set of neighbors of a vertex v. The $degree\ d(v) = |N(v)|$. For a subset U of V(G), G[U] denotes the subgraph of G induced by U. The f independent set of f induced by f independent f independent set of f independent f independent f independent set of f independent

 $K_{1,t}$ is the star of order t+1. A graph is said to be $K_{1,t}$ -free if it does not contain an induced subgraph isomorphic to $K_{1,t}$ ($t \ge 2$). Let h(t,k) be the smallest integer m such that every $K_{1,t}$ -free graph of order greater than m and with minimum degree at least t contains k vertex-disjoint triangles. Wang [5] proved that h(3,k)=6(k-1) for any $k \ge 2$, and he put forward the following conjecture.

Conjecture 1 ([5]). For each integer $t \ge 4$, there exists an integer k_t depending on t only such that h(t, k) = 2t(k - 1) for all integers $k \ge k_t$.

In Section 2, we get a proper lower bound of h(t, k) by a constructive method that $h(4, k) \ge 9(k - 1)$ and $h(t, k) \ge (4t - 9)(k - 1)$ for any $t \ge 5$. Since 4t - 9 > 2t for any $t \ge 5$, we totally disprove Conjecture 1. In Section 3, we give an upper bound of h(t, k), which is related to R(3, t). In particular, we prove that h(4, k) = 9(k - 1) and h(5, k) = 14(k - 1). In Section 4, we give some remarks on h(t, k) and list some interesting open problems. The paper ends with one conjecture.

^{*} Corresponding author. E-mail address: jlwu@sdu.edu.cn (J.-L. Wu).

2. A lower bound of h(t, k)

Let $G_{n,m}$ be the graph whose vertices are $0, 1, \ldots, n-1$ where two vertices i and j are adjacent if and only if $(i-j) \in \{\pm m, \pm (m+1), \ldots, \pm (2m-1)\}$.

Lemma 1 ([4]). If $n \ge 6m-2$ then $G_{n,m}$ is a triangle-free regular graph whose degree is equal to 2m. Furthermore, if $n \le 8m-3$, then the independent number of $G_{n,m}$ is equal to 2m.

Similarly, we define $H_{n,m}$ to be the graph whose vertices are $0, 1, \ldots, n-1$ where two vertices i and j are adjacent if and only if $(i-j) \in \{\pm m, \pm (m+1), \ldots, \pm (2m-1), \pm \lfloor \frac{n}{2} \rfloor \}$.

Lemma 2. $H_{8m-2,m}$ is a triangle-free regular graph whose degree is equal to 2m + 1 and its independent number is equal to 2m + 1.

Proof. Suppose, to the contrary, that $H_{8m-2,m}$ contains a triangle, say $t_0t_1t_2t_0$ where $0 \le t_0 < t_1 < t_2 \le 8m-3$. Then $t_j - t_i \in \{m, m+1, \dots, 2m-1, 4m-1\}$ for $0 \le i < j \le 2$. So $t_2 - t_0 = (t_2 - t_1) + (t_1 - t_0) \ge m + m = 2m$ which implies that $t_2 - t_0 = 4m-1$. Since $t_i \ne t_j$ for $0 \le i < j \le 2$, $t_1 - t_0 \le 2m-1$ and $t_2 - t_1 \le 2m-1$. This implies that $t_2 - t_0 = (t_2 - t_1) + (t_1 - t_0) \le 4m-2$, a contradiction. So $H_{8m-2,m}$ is a triangle-free graph.

Let $S = \{\pm m, \pm (m+1), \dots, \pm (2m-1), 4m-1\}$. Then for any $i, j \in S$, $(i-j) \notin S$. Since |S| = 2m+1, $\alpha(H_{8m-2,m}) \ge 2m+1$.

Consider 2m+1 numbers $0 \le t_0 < t_1 < \cdots < t_{2m} \le n-1$ and suppose that $(t_j-t_i) \notin \{\pm m, \pm (m+1), \ldots, \pm (2m-1)\}$ for any i and j. Put $s_i = t_{i+1} - t_i$ $(i = 1, 2, \ldots, 2m-1), s_0 = n+t_0 - t_{2m}$. It is clear that $s_i \le m-1$ or $s_i \ge 2m$ for any $i = 0, 1, \ldots, 2m-1$. Let r be equal to the number of members s_i which satisfy $s_i \ge 2m$. If $r \ge 3$, then $n \ge r \cdot 2m + (2m+1-r) \cdot 1 = r(2m-1) + 2m+1 \ge 8m-2$, that contradicts the assumption of the lemma. If $r \le 2$ then there exists i such that $s_{i+j} < m$ for every $j = 0, 1, \ldots, m-1$ (we mean that $s_{2m+1} = s_0, s_{2m+2} = s_1, \ldots$). Denote $p_0 = 0, p_j = s_i + s_{i+1} + \cdots + s_{i+j-1}$ $(j = 1, 2, \ldots, m)$. Hence $p_j \equiv (t_{i+j} - t_i) \pmod{n}$. Since every $s_{i+j} \ge 1, p_m \ge m$. Let $j = \min\{l: p_l \ge m\}$. So $p_j \ge m, p_{j-1} \le m-1, p_j = p_{j-1} + s_{i+j} \le (m-1) + (m-1) \le 2m-1$. Therefore, $(t_i - t_{i+j}) \in \{\pm m, \pm (m+1), \ldots, \pm (2m-1)\}$, which leads to a contradiction. \square

Theorem 3. For each integer $k \ge 2$, $h(4, k) \ge 9(k - 1)$.

Proof. Let W be a wheel of order 9. Label W's center by v_0 and its neighbors by v_1, v_2, \ldots, v_8 . Let H be a graph obtained from W by adding two edges v_1v_5 and v_2v_6 . It is obvious that H does not contain two vertex-disjoint triangles. Set $P(H) = \{v_3, v_4, v_7, v_8\}$. Let Π_k be the set of graphs of order 9(k-1) such that a graph G belongs to Π_k if and only if it is obtained from k-1 vertex-disjoint copies H_1, \ldots, H_{k-1} of H by adding G(k-1) new edges on G(k-1) so that these new edges form a perfect matching. It is easy to check that every graph G(k-1) belonging to G(k-1) is the G(k-1) contains at most G(k-1) vertex-disjoint triangles and G(k-1) so G(k-1). G(k-1)

Theorem 4. For each integers $t \ge 5$ and $k \ge 2$,

$$h(t,k) \ge \begin{cases} (4t-6)(k-1), & \text{if } t \text{ is odd}; \\ (4t-9)(k-1), & \text{if } t \text{ is even}. \end{cases}$$

Proof. Let $G = (k-1)(K_1 \vee G_{8m-3,m})$. Then |V(G)| = (8m-2)(k-1) and $\delta(G) = 2m+1$. By Lemma 1, G is a $K_{1,2m+1}$ -free graph which contains at most k-1 vertex-disjoint triangles. So $h(2m+1,k) \geq (8m-2)(k-1)$. Let t = 2m+1. Then $h(t,k) \geq (4t-6)(k-1)$. Similarly, we put $H = (k-1)(K_1 \vee H_{8m-2,m})$. Then |V(G)| = (8m-1)(k-1) and $\delta(G) = 2m+2$. By Lemma 2, H is a $K_{1,2m+2}$ -free graph which contains at most k-1 vertex-disjoint triangles. So we also have $h(2m+2,k) \geq (8m-1)(k-1)$. Let t = 2m+2. Then $h(t,k) \geq (4t-9)(k-1)$. \square

By Theorems 3 and 4, we totally disprove Conjecture 1.

3. An upper bound of h(t, k)

In this section, we continue to consider $K_{1,t}$ -free graphs and give an upper bound of h(t,k). First, we introduce a useful lemma, which is known as *Ramsey's Theorem*.

Lemma 5 ([1] (Ramsey's Theorem)). For any two integers $k \ge 2$ and $l \ge 2$, $R(k, l) \le R(k, l-1) + R(k-1, l)$. Furthermore, if R(k, l-1) and R(k-1, l) are both even, then the strict inequality holds.

In [2] (also see page 7 in [3]), Burr et al. proved that $R(k,t) \ge R(k-1,t) + 2t - 3$ for $k,t \ge 3$. It follows that $R(3,t) \ge R(2,t-1) + 2t - 3 = 3t - 3$ for $t \ge 3$. So we have the following lemma.

Lemma 6. For each integer
$$t \ge 4$$
, $\max \left\{ \left\lfloor \frac{3(t-1)}{2} \right\rfloor, 2t-2, \frac{5}{2}t-4, 3t-6 \right\} \le R(3, t-1)+t-4$.

Theorem 7. For each integer t > 4, h(t, k) < g(t)(k - 1) where

$$g(t) = \begin{cases} R(3,t-1)+t-1, & \textit{if } R(3,t-1) \textit{ and } t \textit{ are both even}; \\ R(3,t-1)+t, & \textit{otherwise}. \end{cases}$$

Proof. If $k \le 1$, the theorem is obvious. So we assume that $k \ge 2$. Suppose that the theorem is false. Let s be the greatest integer such that G contains s vertex-disjoint triangles, say T_1, \ldots, T_s . Then s < k. Define $T = \{T_1, \ldots, T_s\}$, $S = \bigcup_{i=1}^{s} V(T_i)$ and H = G - S. Since G is $K_{1,t}$ -free and $\delta(G) \ge t$, we have that

- $(1) \Delta(H) \leq t 1$, and
- (2) every vertex must be contained in a triangle.

By the maximality of s, we have that

(3) any triangle must have at least one vertex in S.

Thus, we can divide V(H) into three disjoint subsets V_1 , V_2 and V_3 by the following steps. Let $x \in V(H)$ and C_x the set of triangles incident with x. First, if there is a triangle $C \in C_x$, say C = xyzx, and a $T_m \in T$ such that $x, z \in V(H)$ and $y \in V(T_m)$, then we put x into V_1 and say that x is dominated by T_m at y. Otherwise, any triangle containing x must has two vertices contained in S. Then, if there exist a $C \in C_x$, say C = xyzx, and a $T_m \in T$ such that $y, z \in V(T_m)$, then we put x into V_2 and say that x is dominated by T_m at y and z. Finally, we left the case that for any triangle $C \in C_x$, the two vertices in C different from x must contain in different triangles in T. Thus we choose a triangle $C \in C_x$, say C = xyzx, and two triangles T_m , $T_n \in T$ such that $y \in V(T_m)$ and $z \in V(T_n)$ where $1 \le m < n \le s$. Now we put x into V_3 and say that x is dominated by both T_m at y and T_n at z. Moreover, this partition of V(H) should also satisfies

- $|V_1|$ is maximum, and subject to the condition,
- $|V_2|$ is maximum.

Setting this way, we will have $V_i \cap V_i = \emptyset$ for any $1 \le i < j \le 3$ and moreover, if two vertices in $V_2 \cup V_3$ have a common neighbor in S, they are not adjacent (by the choice of V_i 's). In the following, we call a vertex xi-vertex if $x \in V_i$ ($1 \le i \le 3$) and always assume that for $x \in V_1 \cup V_2$, if there are two or more triangles which can dominate x, we only choose one; and for $x \in V_3$, if it is dominated by at least two pairs of triangles, then we choose only one pair of triangles in T to dominate x.

Let $T_m = xyzx$ be a triangle in the set T. For any $v \in T_m$, we define $S_i(T_m, v)$ to be the set of i-vertices dominated by T_m at v and then $S_i(T_m) = \bigcup_{v \in T_m} S_i(T_m, v)$, where $1 \le i \le 3$. Then

 $(4) \max\{|S_3(T_m,x)|, |S_3(T_m,y)|, |S_3(T_m,z)|\} \le t-2.$

Since if $|S_3(T_m,x)| \ge t-1$, that is, x is adjacent to t-1 3-vertices x_1,\ldots,x_{t-1} dominated by T_m , then $G[\{x, x_1, \ldots, x_{t-1}, z\}] \simeq K_{1,t}$, a contradiction. So $|S_3(T_m, x)| \leq t-2$. Similarly, we have $|S_3(T_m, y)| \leq t-2$ and $|S_3(T_m, z)| \le t - 2$. Hence (4) holds.

$$(5) |S_2(T_m)| \le \left| \frac{3(t-1)}{2} \right|.$$

 $(5) |S_2(T_m)| \le \left\lfloor \frac{3(t-1)}{2} \right\rfloor.$ Since if $|S_2(T_m)| > \left\lfloor \frac{3(t-1)}{2} \right\rfloor$, there must exist a vertex, say x, such that T_m dominates at least t 2-vertices at x. Then these t 2-vertices along with \bar{x} forms a $K_{1,t}$, a contradiction.

(6) $\max\{|S_2(T_m, x) \bigcup S_3(T_m, x)|, |S_2(T_m, y) \bigcup S_3(T_m, y)|, |S_2(T_m, z) \bigcup S_3(T_m, z)|\} \le t - 1.$

Since if $|S_2(T_m, x) \bigcup S_3(T_m, x)| \ge t$, $G[\{x\} \bigcup S_2(T_m, x) \bigcup S_3(T_m, x)] \supseteq K_{1,t}$, a contradiction.

Let $v \in V_1 \cup V_2$. If v is dominated by some $T_m \in T$, then we define $a(v, T_m) = 1$. Otherwise, we define $a(v, T_m) = 0$. Let $v \in V_3$ and v is dominated by two triangles $T_i = xyzx$ and $T_j = abca$ at x and a, respectively. If $\max\{|S_1(T_i, y)|, |S_1(T_i, z)|\} \ge 1$ and $S_1(T_j, b) = S_1(T_j, c) = 0$, we define $a(v, T_j) = 1$ and $a(v, T_m) = 0$ for all $m \neq j$. Otherwise, we define $a(v, T_i) = 1$ $a(v, T_j) = \frac{1}{2}$ and $a(v, T_m) = 0$ for any $m \in \{1, 2, ..., s\} \setminus \{i, j\}$.

For each $T_m \in T$, we define its dominatingcapacity $ca(T_m) = \sum_{x \in V(H)} a(x, T_m)$. Since any vertex in V(H) is dominated by some $T_i \in T$, $\sum_{i=1}^s ca(T_i) = \sum_{i=1}^s \sum_{x \in V(H)} a(x, T_i) = \sum_{x \in V(H)} \sum_{i=1}^s a(x, T_i) \ge |V(H)| \ge g(t)(k-1) + 1 - 3s \ge (g(t) - 3)s + 1$. This implies that there is a triangle T_α , say $T_\alpha = xyzx$, such that $ca(T_\alpha) > g(t) - 3$ for some $1 \le \alpha \le s$. Case 1. T_{α} dominates no 3-vertices.

Suppose T_{α} dominates no 1-vertices, then by (5) and Lemma 6, we have $ca(T_{\alpha}) \leq \left| \frac{3(t-1)}{2} \right| \leq R(3, t-1) + t - 4 \leq g(t) - 3$. So without loss of generality, we can assume x_1 is a 1-vertex dominated by T_α at x. Then by the definition of V_1 , there exists another vertex $x_2 \in V_1$ such that $xx_2, x_1x_2 \in E(G)$. By the maximality of s, if v is a 2-vertex dominated by T_{α} , we must have $vx \in E(G)$. Suppose $S_1(T_\alpha, y) \bigcup S_1(T_\alpha, z) \subseteq N(x)$, then $ca(T_\alpha) \leq \Delta(G) - 2 \leq R(3, t) - 3 \leq g(t) - 3$ by Lemma 5, a contradiction. So without loss of generality, we can assume that $S_1(T_\alpha, y) \setminus N(x) \neq \emptyset$. This implies that there exists a 1-vertex dominated by T_{α} at y, say y_1 , such that $yy_1 \in E(G)$ and $xy_1 \notin E(G)$. At the same time, there also exist another vertex $y_2 \in V_1$ such that $yy_2, y_1y_2 \in E(G)$. By the maximality of s, we must have $y_2 \in \{x_1, x_2\}$. Without loss of generality, we assume $y_2 = x_1$ which implies $x_1y_1, x_1y \in E(G)$. By the maximality of s, we have $S_2(T_\alpha, z) = \emptyset$. Since $vy_1 \notin E(G)$ for any $v \in S_2(T_\alpha, y), |S_2(T_\alpha)| = |S_2(T_\alpha, y)| \le t - 2$. Suppose $S_1(T_\alpha, z) \neq \emptyset$ or $S_1(T_\alpha, x) \setminus \{x_1, x_2\} \neq \emptyset$, then for any 1-vertex v dominated by T_{α} , we must have $vx_1 \in E(G)$. For otherwise, we can replace T_{α} with two new vertex-disjoint triangles which are also vertex-disjoint to any triangle in $T \setminus \{T_{\alpha}\}$, a contradiction. Since $d_H(x_1) \leq t - 1$ by (1), $S_1(T_\alpha) \le t - 1 + 1 = t$. So $ca(T_\alpha) = |S_1(T_\alpha)| + |S_2(T_\alpha)| \le t + t - 2 = 2t - 2 \le g(t) - 3$ by Lemma 6, a contradiction. So $S_1(T_\alpha,z)=S_1(T_\alpha,x)\setminus\{x_1,x_2\}=\emptyset$. By the maximality of $s,S_1(T_\alpha,y)\setminus\{x_1,x_2\}$ along with z forms an independent set in G, so $|S_1(T_\alpha,y)\setminus\{x_1,x_2\}|\leq t-2$ which implies $S_1(T_\alpha)\leq t-2+2=t$. So we also have $ca(T_\alpha)=|S_1(T_\alpha)|+|S_2(T_\alpha)|\leq t+t-2=2t-2\leq g(t)-3$ by Lemma 6, a contradiction.

Case 2. T_{α} dominates a 3-vertex at x and $S_1(T_{\alpha}, y) = S_1(T_{\alpha}, z) = \emptyset$.

Suppose $S_1(T_\alpha,x) \neq \emptyset$. Select $u \in S_3(T_\alpha,x)$. Set $L = G[N_H(x) \bigcup \{x,y,z\}/\{u\}]$. Then L is a $K_{1,t-1}$ -free graph, for otherwise, there must exist an independent set $M \subseteq V(L)$ of size t-1, then $G[M \bigcup \{x,u\}] \simeq K_{1,t}$, a contradiction. By the maximality of $s,L \not\supseteq 2C_3$. It follows that $d_H(x) = d_L(x) + 1 - 2 \leq R(3,t-1) - 2$. Since $S_1(T_\alpha,x) \neq \emptyset$, $a(w,T_\alpha) \leq \frac{1}{2}$ for any $w \in S_3(T_\alpha,y) \bigcup S_3(T_\alpha,z)$ and there is no vertex $v \in V_2$ such that $vy,vz \in E(G)$. That is, $S_2(T_\alpha,y) \bigcup S_2(T_\alpha,z) \subseteq N(x)$. By (4), we have $|S_3(T_\alpha,y)| \leq t-2$ and $|S_3(T_\alpha,z)| \leq t-2$. Then $ca(T_\alpha) \leq d_H(x) + \frac{1}{2}(t-2) + \frac{1}{2}(t-2) \leq R(3,t-1) + t - 4 \leq g(t) - 3$, a contradiction. So $S_1(T_\alpha,x) = \emptyset$.

Suppose $|S_2(T_\alpha)|=0$, then by (4), we have $\max\{|S_3(T_\alpha,x)|,|S_3(T_\alpha,y)|,|S_3(T_\alpha,z)|\} \le t-2$. This implies $ca(T_\alpha) \le 3(t-2) \le g(t)-3$ by Lemma 6, a contradiction. So $|S_2(T_\alpha)|=m>0$. Without loss of generality, we can select a vertex $w \in S_2(T_\alpha)$ such that $wy, wz \in E(G)$. Now, we claim that $a(v,T_\alpha)=\frac{1}{2}$ for any $v \in S_3(T_\alpha,x)$. By the definition of V_3 , for such a v, there exists another triangle, say $T_\gamma=dpqd$, such that v is dominated by T_γ at d. Then by the maximality of s, we must have $S_1(T_\gamma,p)=S_1(T_\gamma,q)=\emptyset$. By the definition of the function $a(\cdot,\cdot)$, we have $a(v,T_\alpha)=\frac{1}{2}$ since $S_1(T_\alpha,y)=S_1(T_\alpha,z)=\emptyset$. Let $|S_2(T_\alpha,x)|=a_x$, $|S_2(T_\alpha,y)|=a_y$ and $|S_2(T_\alpha,z)|=a_z$, then $a_x+a_y+a_z=2m$. By (6), we also have $|S_3(T_\alpha,x)|\le t-1-a_x$, $|S_3(T_\alpha,y)|\le t-1-a_y$ and $|S_3(T_\alpha,z)|\le t-1-a_z$. Suppose $m\ge 2$, then $a_y+a_z\ge 3$ and $ca(T_\alpha)\le m+\frac{1}{2}(t-1-a_x)+(t-1-a_y)+(t-1-a_z)=\frac{5}{2}(t-1)-\frac{1}{2}(a_y+a_z)\le \frac{5}{2}t-4\le g(t)-3$, a contradiction. So we have m=1 and then $a_x=0$, $a_y=a_z=1$, which implies $ca(T_\alpha)\le 1+\frac{1}{2}(t-2)+(t-2)+(t-2)=\frac{5}{2}(t-1)-4\le g(t)-3$, a contradiction.

Case 3. T_{α} dominates a 3-vertex at x but $S_1(T_{\alpha}, y) \neq \emptyset$ (the case when $S_1(T_{\alpha}, z) \neq \emptyset$ is similar).

Select $u \in S_3(T_\alpha, x)$, then by the definition of V_3 , there exists another triangle, say $T_\beta = abca$, such that $u \in S_3(T_\beta, a)$. That is, $xa, xu, au \in E(G)$. Choose $y_1 \in S_1(T_\alpha, y)$. Then $a(w, T_\alpha) \leq \frac{1}{2}$ for any $w \in S_3(T_\alpha, x) \bigcup S_3(T_\alpha, z)$. Suppose $\max\{|S_1(T_\beta, b)|, |S_1(T_\beta, c)|\} \geq 1$. Without loss of generality, we assume $|S_1(T_\beta, b)| \geq 1$ and $b_1 \in S_1(T_\beta, b)$. Then by the definition of V_1 , there exist a vertex $y_2 \in N(y)$ and $b_2 \in N(b)$ such that $y_1y_2 \in E(G)$, $b_1b_2 \in E(G)$.

Set $U = \{y_1, y_2\} \bigcup \{b_1, b_2\}$. Then by the maximality of s, we have

(a) $|U| \leq 3$

(b) There is no vertex $v \in V(H) \setminus U$ such that vx, $vz \in E(G)$ or vy, $vz \in E(G)$. In particular, $S_2(T_\alpha, x) \cap S_2(T_\alpha, z) = \emptyset$ and $S_2(T_\alpha, y) \cap S_2(T_\alpha, z) = \emptyset$.

(c) $\{z\} \bigcup N_H(x) \setminus U$, $\{z\} \bigcup N_H(y) \setminus \{b_1, b_2\}$, $\{x\} \bigcup N_H(z) \setminus U$ are three independent sets. In particular, $\max\{|N_H(x) \setminus U|, |N_H(y) \setminus \{b_1, b_2\}|, |N_H(z) \setminus U|\} \le t - 2$.

Next, we claim that $|S_1(T_\alpha)| \le t-1$. First, we consider the case when |U|=2. Suppose $S_1(T_\alpha,x) \ne \emptyset$ (the case when $S_1(T_\alpha,z) \ne \emptyset$ is similar). If $S_1(T_\alpha,y) \setminus U \ne \emptyset$ or $S_1(T_\alpha,z) \ne \emptyset$, then every vertex in $S_1(T_\alpha) \setminus U$ must be adjacent to the same vertex in U. Since $\Delta(H) \le t-1$ by (1) and $b_1 \notin S_1(T_\alpha)$, $|S_1(T_\alpha)| \le t-1$. If $S_1(T_\alpha,y) \setminus U = S_1(T_\alpha,z) = \emptyset$, then by (c) we have $|N_H(x) \setminus U| \le t-2$ since G is a $K_{1,t}$ -free graph. Note again that $b_1 \notin S_1(T_\alpha)$, we also have $|S_1(T_\alpha)| \le t-2+1=t-1$. So we assume $S_1(T_\alpha,x)=S_1(T_\alpha,z)=\emptyset$. Then by (c), we have $|N_H(y) \setminus \{b_1,b_2\}| \le t-2$ which implies $|S_1(T_\alpha)| \le t-2+1=t-1$ since $b_1 \notin S_1(T_\alpha)$. Second, we consider the case when |U|=3. Since |U|=3, $|\{y_1,y_2\} \cap \{b_1,b_2\}|=1$. Let $v \in \{y_1,y_2\} \cap \{b_1,b_2\}$. Then by the maximality of s, every vertex in $S_1(T_\alpha) \setminus U$ must be adjacent to v. Since $d_H(v) \le t-1$ by (1) and $d_1 \notin S_1(T_\alpha)$, $|S_1(T_\alpha)| \le t-1$.

Let $|S_1(T_\alpha, x) \setminus U| = b_x$, $|S_1(T_\alpha, y) \setminus U| = b_y$, $|S_1(T_\alpha, z) \setminus U| = b_z$ and $|S_2(T_\alpha)| = m$. Note that $b_1 \notin S_1(T_\alpha)$ and $|U| \le 3$, we have $|U \cap S_1(T_\alpha)| \le 2$. This implies $|S_1(T_\alpha)| - 2 \le b_x + b_y + b_z \le |S_1(T_\alpha)| - 1$. By (b) and (c), we have $|S_3(T_\alpha, x)| \le t - 2 - m - b_x$ and $|S_3(T_\alpha, z)| \le t - 2 - b_z$. Suppose $b_x + b_y + b_z = |S_1(T_\alpha)| - 1$, then by (c), we also have $|S_3(T_\alpha, y)| \le t - 2 - m - b_y$. This implies $ca(T_\alpha) \le |S_1(T_\alpha)| + m + \frac{t - 2 - m - b_x}{2} + (t - 2 - m - b_y) + \frac{t - 2 - b_z}{2} \le \frac{|S_1(T_\alpha)| - 1}{2} + 1 + 2(t - 2) \le \frac{5}{2}t - 4 \le g(t) - 3$ by Lemma 6, a contradiction. So $b_x + b_y + b_z = |S_1(T_\alpha)| - 2$ which implies |U| = 3. By (c), we have $|N_H(y) \setminus U| \le |N_H(y) \setminus \{b_1, b_2\}| - 1 \le t - 3$ and then $|S_3(T_\alpha, y)| \le t - 3 - m - b_y$. So $ca(T_\alpha) \le |S_1(T_\alpha)| + m + \frac{t - 2 - m - b_x}{2} + (t - 3 - m - b_y) + \frac{t - 2 - b_z}{2} \le \frac{|A_2| - 2}{2} + 2 + 2t - 5 \le \frac{5}{2}t - 4 \le g(t) - 3$ by Lemma 6, a contradiction.

So for any 3-vertex $v \in S_3(T_\alpha, x)$ where $T_\alpha = xyzx$, $\max\{|S_1(T_\alpha, y)|, |S_1(T_\alpha, z)|\} \ge 1$ and there must exist a triangle $T_\beta = abca$ such that $v \in S_3(T_\beta, a)$ and $|S_1(T_\beta, b)| = |S_1(T_\beta, c)| = 0$. Then for any $v \in S_3(T_\alpha)$, $a(v, T_\alpha) = 0$. By the similar proof as in Case 1, we also have $ca(T_\alpha) \le g(t) - 3$, a contradiction.

Hence, for each integer t > 4,

$$h(t,k) \le \begin{cases} (R(3,t-1)+t-1)(k-1), & \text{if } R(3,t-1) \text{ and } t \text{ are both even;} \\ (R(3,t-1)+t)(k-1), & \text{for otherwise.} \end{cases}$$

We complete the proof of the theorem. \Box

By Theorems 3, 4 and 7, we have the following result.

Corollary 8. h(4, k) = 9(k - 1) and h(5, k) = 14(k - 1).

4. Conclusions

In Section 2, we constructively obtain a lower bound of h(t,k). We firstly construct a $K_{1,t}$ -free graph (in fact, a graph with independent number no more than t-1) with minimum degree at least t but containing at most one vertex-disjoint triangle, then we make k-1 copies of it. The resulting graph just implies the lower bound of h(t,k). In view of this, consider a (3,t)-Ramsey graph R (that is a triangle-free graph with its independent number no more than t-1). The join graph $K_1 \vee R$ must be a $K_{1,t}$ -free graph on R(3,t) vertices but containing at most one vertex-disjoint triangle. But we do not know whether $\delta(K_1 \vee R) > t$ or not. In particular, we have the following question.

Question 1. Does there exist a (3, t)-Ramsey graph R such that $\delta(R) \geq t - 1$?

If such a graph R do exist, then $(k-1)(K_1\vee R)$ is a $K_{1,t}$ -free graph on R(3,t)(k-1) vertices but containing at most k-1 vertex-disjoint triangles. This implies $h(t,k)\geq R(3,t)(k-1)$. This lower bound seems more beautiful and reasonable, but whether it is proper is still unknown. Note that R(3,3)=6, R(3,4)=9 and R(3,5)=14 (see [1] on page 106). Wang [5] proved h(3,k)=6(k-1)=R(3,3)(k-1). In Section 3, we prove h(4,k)=R(3,4)(k-1) and h(5,k)=R(3,5)(k-1). These results imply that the answer of the above question is "yes" for $3\leq t\leq 5$. Thus we pose the following conjecture to end this paper.

Conjecture 2. For each integer t > 3, h(t, k) = R(3, t)(k - 1).

Acknowledgements

The authors appreciate the anonymous referees sincerely for their helpful comments. The third author's work was partially supported by NNSFC (10971121, 10631070).

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
- [2] S.A. Burr, P. Erdős, R.J. Faudree, R.H. Schelp, On the difference between consecutive Ramsey numbers, Utilitas Mathematica 35 (1989) 115–118.
- [3] S.P. Radziszowski, Small Ramsey Numbers, The Electronic Journal of Combinatorics DS1# 12 (2009) 1–42.
- [4] A.F. Sidorenko, Triangle-free regular graphs, Discrete Mathematics 91 (1991) 215–217.
- [5] H. Wang, Vertex-disjoint triangles in claw-free graphs with minimum degree at least three, Combinatorica 18 (1998) 441–447.