Vertex-disjoint triangles in $K_{1, t}$-free graphs with minimum degree at least t

Xin Zhang, Na Li, Jian-Liang Wu*, Jin Yan
School of Mathematics, Shandong University, Jinan, 250100, China

ARTICLE INFO

Article history:

Received 31 December 2009
Received in revised form 5 June 2010
Accepted 7 June 2010
Available online 5 July 2010

Keywords:

$K_{1, t}-$ free graph
Disjoint
Triangle
Ramsey number

Abstract

A graph is said to be $K_{1, t}$-free if it does not contain an induced subgraph isomorphic to $K_{1, t}$. Let $h(t, k)$ be the smallest integer m such that every $K_{1, t}-$ free graph of order greater than m and with minimum degree at least t contains k vertex-disjoint triangles. In this paper, we obtain a lower bound of $h(t, k)$ by a constructive method. According to the lower bound, we totally disprove the conjecture raised by Hong Wang [H. Wang, Vertex-disjoint triangles in claw-free graphs with minimum degree at least three, Combinatorica 18 (1998) 441-447]. We also obtain an upper bound of $h(t, k)$ which is related to Ramsey numbers $R(3, t)$. In particular, we prove that $h(4, k)=9(k-1)$ and $h(5, k)=14(k-1)$.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs are finite, simple and undirected. Let G be a graph. We use $V(G), E(G), \delta(G)$ and $\Delta(G)$ to denote the vertex set, the edge set, the minimum degree and the maximum degree of G. If $u v \in E(G)$, then u is said to be the neighbor of v. We use $N(v)$ to denote the set of neighbors of a vertex v. The degree $d(v)=|N(v)|$. For a subset U of $V(G), G[U]$ denotes the subgraph of G induced by U. The join $G=G_{1} \vee G_{2}$ of graph G_{1} and G_{2} with disjoint vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} is the graph $G_{1} \bigcup G_{2}$ together with all the edges jointing V_{1} and V_{2}. For any positive integers k and l, the Ramsey number $R(k, l)$ is the smallest integer n such that every graph on n vertices contains either a clique of k vertices or an independent set of l vertices. A (k, l)-Ramsey graph is a graph on $R(k, l)-1$ vertices that contains neither a clique of k vertices nor an independent set of l vertices. By the definition of $R(k, l),(k, l)$-Ramsey graph does exist for all $k \geq 2$ and $l \geq 2$. The graph C_{k} is a cycle with k vertices and we call C_{3} a triangle. We use $m Q$ to represent m vertex-disjoint copies of graph Q. Other notations can be found in [1].
$K_{1, t}$ is the star of order $t+1$. A graph is said to be $K_{1, t}$-free if it does not contain an induced subgraph isomorphic to $K_{1, t}(t \geq 2)$. Let $h(t, k)$ be the smallest integer m such that every $K_{1, t}-$ free graph of order greater than m and with minimum degree at least t contains k vertex-disjoint triangles. Wang [5] proved that $h(3, k)=6(k-1)$ for any $k \geq 2$, and he put forward the following conjecture.

Conjecture 1 ([5]). For each integer $t \geq 4$, there exists an integer k_{t} depending on t only such that $h(t, k)=2 t(k-1)$ for all integers $k \geq k_{t}$.

In Section 2, we get a proper lower bound of $h(t, k)$ by a constructive method that $h(4, k) \geq 9(k-1)$ and $h(t, k) \geq$ $(4 t-9)(k-1)$ for any $t \geq 5$. Since $4 t-9>2 t$ for any $t \geq 5$, we totally disprove Conjecture 1 . In Section 3 , we give an upper bound of $h(t, k)$, which is related to $R(3, t)$. In particular, we prove that $h(4, k)=9(k-1)$ and $h(5, k)=14(k-1)$. In Section 4, we give some remarks on $h(t, k)$ and list some interesting open problems. The paper ends with one conjecture.

[^0]
2. A lower bound of $h(t, k)$

Let $G_{n, m}$ be the graph whose vertices are $0,1, \ldots, n-1$ where two vertices i and j are adjacent if and only if $(i-j) \in$ $\{ \pm m, \pm(m+1), \ldots, \pm(2 m-1)\}$.

Lemma 1 ([4]). If $n \geq 6 m-2$ then $G_{n, m}$ is a triangle-free regular graph whose degree is equal to $2 m$. Furthermore, if $n \leq 8 m-3$, then the independent number of $G_{n, m}$ is equal to $2 m$.

Similarly, we define $H_{n, m}$ to be the graph whose vertices are $0,1, \ldots, n-1$ where two vertices i and j are adjacent if and only if $(i-j) \in\left\{ \pm m, \pm(m+1), \ldots, \pm(2 m-1), \pm\left\lfloor\frac{n}{2}\right\rfloor\right\}$.

Lemma 2. $H_{8 m-2, m}$ is a triangle-free regular graph whose degree is equal to $2 m+1$ and its independent number is equal to $2 m+1$.

Proof. Suppose, to the contrary, that $H_{8 m-2, m}$ contains a triangle, say $t_{0} t_{1} t_{2} t_{0}$ where $0 \leq t_{0}<t_{1}<t_{2} \leq 8 m-3$. Then $t_{j}-t_{i} \in\{m, m+1, \ldots, 2 m-1,4 m-1\}$ for $0 \leq i<j \leq 2$. So $t_{2}-t_{0}=\left(t_{2}-t_{1}\right)+\left(t_{1}-t_{0}\right) \geq m+m=2 m$ which implies that $t_{2}-t_{0}=4 m-1$. Since $t_{i} \neq t_{j}$ for $0 \leq i<j \leq 2, t_{1}-t_{0} \leq 2 m-1$ and $t_{2}-t_{1} \leq 2 m-1$. This implies that $t_{2}-t_{0}=\left(t_{2}-t_{1}\right)+\left(t_{1}-t_{0}\right) \leq 4 m-2$, a contradiction. So $H_{8 m-2, m}$ is a triangle-free graph.

Let $S=\{ \pm m, \pm(m+1), \ldots, \pm(2 m-1), 4 m-1\}$. Then for any $i, j \in S,(i-j) \notin S$. Since $|S|=2 m+1, \alpha\left(H_{8 m-2, m}\right) \geq$ $2 m+1$.

Consider $2 m+1$ numbers $0 \leq t_{0}<t_{1}<\cdots<t_{2 m} \leq n-1$ and suppose that $\left(t_{j}-t_{i}\right) \notin\{ \pm m, \pm(m+1), \ldots, \pm(2 m-1)\}$ for any i and j. Put $s_{i}=t_{i+1}-t_{i}(i=1,2, \ldots, 2 m-1), s_{0}=n+t_{0}-t_{2 m}$. It is clear that $s_{i} \leq m-1$ or $s_{i} \geq 2 m$ for any $i=0,1, \ldots, 2 m-1$. Let r be equal to the number of members s_{i} which satisfy $s_{i} \geq 2 m$. If $r \geq 3$, then $n \geq r \cdot 2 m+(2 m+1-r) \cdot 1=r(2 m-1)+2 m+1 \geq 8 m-2$, that contradicts the assumption of the lemma. If $r \leq 2$ then there exists i such that $s_{i+j}<m$ for every $j=0,1, \ldots, m-1$ (we mean that $s_{2 m+1}=s_{0}, s_{2 m+2}=s_{1}, \ldots$). Denote $p_{0}=0, p_{j}=s_{i}+s_{i+1}+\cdots+s_{i+j-1}(j=1,2, \ldots, m)$. Hence $p_{j} \equiv\left(t_{i+j}-t_{i}\right)(\bmod n)$. Since every $s_{i+j} \geq 1, p_{m} \geq m$. Let $j=\min \left\{l: p_{l} \geq m\right\}$. So $p_{j} \geq m, p_{j-1} \leq m-1, p_{j}=p_{j-1}+s_{i+j} \leq(m-1)+(m-1) \leq 2 m-1$. Therefore, $\left(t_{i}-t_{i+j}\right) \in\{ \pm m, \pm(m+1), \ldots, \pm(2 m-1)\}$, which leads to a contradiction.

Theorem 3. For each integer $k \geq 2, h(4, k) \geq 9(k-1)$.
Proof. Let W be a wheel of order 9 . Label W 's center by v_{0} and its neighbors by $v_{1}, v_{2}, \ldots, v_{8}$. Let H be a graph obtained from W by adding two edges $v_{1} v_{5}$ and $v_{2} v_{6}$. It is obvious that H does not contain two vertex-disjoint triangles. Set $P(H)=\left\{v_{3}, v_{4}, v_{7}, v_{8}\right\}$. Let Π_{k} be the set of graphs of order $9(k-1)$ such that a graph G belongs to Π_{k} if and only if it is obtained from $k-1$ vertex-disjoint copies H_{1}, \ldots, H_{k-1} of H by adding $2(k-1)$ new edges on $\bigcup_{i=1}^{k-1} P\left(H_{i}\right)$ so that these new edges form a perfect matching. It is easy to check that every graph H belonging to \prod_{k} is the $K_{1,4}$-free graph which contains at most $k-1$ vertex-disjoint triangles and $\delta(G) \geq 4$. So $h(4, k) \geq 9(k-1)$.

Theorem 4. For each integers $t \geq 5$ and $k \geq 2$,

$$
h(t, k) \geq \begin{cases}(4 t-6)(k-1), & \text { if } t \text { is odd } \\ (4 t-9)(k-1), & \text { if } t \text { is even } .\end{cases}
$$

Proof. Let $G=(k-1)\left(K_{1} \vee G_{8 m-3, m}\right)$. Then $|V(G)|=(8 m-2)(k-1)$ and $\delta(G)=2 m+1$. By Lemma $1, G$ is a $K_{1,2 m+1^{-}}$ free graph which contains at most $k-1$ vertex-disjoint triangles. So $h(2 m+1, k) \geq(8 m-2)(k-1)$. Let $t=2 m+1$. Then $h(t, k) \geq(4 t-6)(k-1)$. Similarly, we put $H=(k-1)\left(K_{1} \vee H_{8 m-2, m}\right)$. Then $|V(G)|=(8 m-1)(k-1)$ and $\delta(G)=2 m+2$. By Lemma $2, H$ is a $K_{1,2 m+2}$-free graph which contains at most $k-1$ vertex-disjoint triangles. So we also have $h(2 m+2, k) \geq(8 m-1)(k-1)$. Let $t=2 m+2$. Then $h(t, k) \geq(4 t-9)(k-1)$.

By Theorems 3 and 4, we totally disprove Conjecture 1.

3. An upper bound of $\boldsymbol{h}(\boldsymbol{t}, \boldsymbol{k})$

In this section, we continue to consider $K_{1, t}$-free graphs and give an upper bound of $h(t, k)$. First, we introduce a useful lemma, which is known as Ramsey's Theorem.

Lemma 5 ([1] (Ramsey's Theorem)). For any two integers $k \geq 2$ and $l \geq 2, R(k, l) \leq R(k, l-1)+R(k-1, l)$. Furthermore, if $R(k, l-1)$ and $R(k-1, l)$ are both even, then the strict inequality holds.

In [2] (also see page 7 in [3]), Burr et al. proved that $R(k, t) \geq R(k-1, t)+2 t-3$ for $k, t \geq 3$. It follows that $R(3, t) \geq R(2, t-1)+2 t-3=3 t-3$ for $t \geq 3$. So we have the following lemma.

Lemma 6. For each integer $t \geq 4, \max \left\{\left\lfloor\frac{3(t-1)}{2}\right\rfloor, 2 t-2, \frac{5}{2} t-4,3 t-6\right\} \leq R(3, t-1)+t-4$.

Theorem 7. For each integer $t \geq 4, h(t, k) \leq g(t)(k-1)$ where $g(t)= \begin{cases}R(3, t-1)+t-1, & \text { if } R(3, t-1) \\ R(3, t-1)+t, & \text { otherwise } .\end{cases}$

Proof. If $k \leq 1$, the theorem is obvious. So we assume that $k \geq 2$. Suppose that the theorem is false. Let s be the greatest integer such that G contains s vertex-disjoint triangles, say T_{1}, \ldots, T_{s}. Then $s<k$. Define $T=\left\{T_{1}, \ldots, T_{s}\right\}, S=\bigcup_{i=1}^{s} V\left(T_{i}\right)$ and $H=G-S$. Since G is $K_{1, t}-$ free and $\delta(G) \geq t$, we have that
(1) $\Delta(H) \leq t-1$, and
(2) every vertex must be contained in a triangle.

By the maximality of s, we have that
(3) any triangle must have at least one vertex in S.

Thus, we can divide $V(H)$ into three disjoint subsets V_{1}, V_{2} and V_{3} by the following steps. Let $x \in V(H)$ and C_{x} the set of triangles incident with x. First, if there is a triangle $C \in C_{x}$, say $C=x y z x$, and a $T_{m} \in T$ such that $x, z \in V(H)$ and $y \in V\left(T_{m}\right)$, then we put x into V_{1} and say that x is dominated by T_{m} at y. Otherwise, any triangle containing x must has two vertices contained in S. Then, if there exist a $C \in C_{x}$, say $C=x y z x$, and a $T_{m} \in T$ such that $y, z \in V\left(T_{m}\right)$, then we put x into V_{2} and say that x is dominated by T_{m} at y and z. Finally, we left the case that for any triangle $C \in C_{x}$, the two vertices in C different from x must contain in different triangles in T. Thus we choose a triangle $C \in C_{x}$, say $C=x y z x$, and two triangles $T_{m}, T_{n} \in T$ such that $y \in V\left(T_{m}\right)$ and $z \in V\left(T_{n}\right)$ where $1 \leq m<n \leq s$. Now we put x into V_{3} and say that x is dominated by both T_{m} at y and T_{n} at z. Moreover, this partition of $V(H)$ should also satisfies

- $\left|V_{1}\right|$ is maximum, and subject to the condition,
- $\left|V_{2}\right|$ is maximum.

Setting this way, we will have $V_{i} \bigcap V_{j}=\emptyset$ for any $1 \leq i<j \leq 3$ and moreover, if two vertices in $V_{2} \bigcup V_{3}$ have a common neighbor in S, they are not adjacent (by the choice of V_{i} 's). In the following, we call a vertex $x i$-vertex if $x \in V_{i}(1 \leq i \leq 3)$ and always assume that for $x \in V_{1} \bigcup V_{2}$, if there are two or more triangles which can dominate x, we only choose one; and for $x \in V_{3}$, if it is dominated by at least two pairs of triangles, then we choose only one pair of triangles in T to dominate x.

Let $T_{m}=x y z x$ be a triangle in the set T. For any $v \in T_{m}$, we define $S_{i}\left(T_{m}, v\right)$ to be the set of i-vertices dominated by T_{m} at v and then $S_{i}\left(T_{m}\right)=\bigcup_{v \in T_{m}} S_{i}\left(T_{m}, v\right)$, where $1 \leq i \leq 3$. Then
(4) $\max \left\{\left|S_{3}\left(T_{m}, x\right)\right|,\left|S_{3}\left(T_{m}, y\right)\right|,\left|S_{3}\left(T_{m}, z\right)\right|\right\} \leq t-2$.

Since if $\left|S_{3}\left(T_{m}, x\right)\right| \geq t-1$, that is, x is adjacent to $t-13$-vertices x_{1}, \ldots, x_{t-1} dominated by T_{m}, then $G\left[\left\{x, x_{1}, \ldots, x_{t-1}, z\right\}\right] \simeq K_{1, t}$, a contradiction. So $\left|S_{3}\left(T_{m}, x\right)\right| \leq t-2$. Similarly, we have $\left|S_{3}\left(T_{m}, y\right)\right| \leq t-2$ and $\left|S_{3}\left(T_{m}, z\right)\right| \leq t-2$. Hence (4) holds.
(5) $\left|S_{2}\left(T_{m}\right)\right| \leq\left\lfloor\frac{3(t-1)}{2}\right\rfloor$.

Since if $\left|S_{2}\left(T_{m}\right)\right|>\left\lfloor\frac{3(t-1)}{2}\right\rfloor$, there must exist a vertex, say x, such that T_{m} dominates at least $t 2$-vertices at x. Then these t 2-vertices along with x forms a $K_{1, t}$, a contradiction.
(6) $\max \left\{\left|S_{2}\left(T_{m}, x\right) \bigcup S_{3}\left(T_{m}, x\right)\right|,\left|S_{2}\left(T_{m}, y\right) \bigcup S_{3}\left(T_{m}, y\right)\right|,\left|S_{2}\left(T_{m}, z\right) \bigcup S_{3}\left(T_{m}, z\right)\right|\right\} \leq t-1$.

Since if $\left|S_{2}\left(T_{m}, x\right) \bigcup S_{3}\left(T_{m}, x\right)\right| \geq t, G\left[\{x\} \bigcup S_{2}\left(T_{m}, x\right) \bigcup S_{3}\left(T_{m}, x\right)\right] \supseteq K_{1, t}$, a contradiction.
Let $v \in V_{1} \bigcup V_{2}$. If v is dominated by some $T_{m} \in T$, then we define $a\left(v, T_{m}\right)=1$. Otherwise, we define $a\left(v, T_{m}\right)=0$. Let $v \in V_{3}$ and v is dominated by two triangles $T_{i}=x y z x$ and $T_{j}=a b c a$ at x and a, respectively. If $\max \left\{\left|S_{1}\left(T_{i}, y\right)\right|,\left|S_{1}\left(T_{i}, z\right)\right|\right\} \geq 1$ and $S_{1}\left(T_{j}, b\right)=S_{1}\left(T_{j}, c\right)=0$, we define $a\left(v, T_{j}\right)=1$ and $a\left(v, T_{m}\right)=0$ for all $m \neq j$. Otherwise, we define $a\left(v, T_{i}\right)=$ $a\left(v, T_{j}\right)=\frac{1}{2}$ and $a\left(v, T_{m}\right)=0$ for any $m \in\{1,2, \ldots, s\} \backslash\{i, j\}$.

For each $T_{m} \in T$, we define its dominatingcapacity $c a\left(T_{m}\right)=\sum_{x \in V(H)} a\left(x, T_{m}\right)$. Since any vertex in $V(H)$ is dominated by some $T_{i} \in T, \sum_{i=1}^{s} c a\left(T_{i}\right)=\sum_{i=1}^{s} \sum_{x \in V(H)} a\left(x, T_{i}\right)=\sum_{x \in V(H)} \sum_{i=1}^{s} a\left(x, T_{i}\right) \geq|V(H)| \geq g(t)(k-1)+1-3 s \geq$ $(g(t)-3) s+1$. This implies that there is a triangle T_{α}, say $T_{\alpha}=x y z x$, such that $c a\left(T_{\alpha}\right)>g(t)-3$ for some $1 \leq \alpha \leq s$.
Case 1. T_{α} dominates no 3-vertices.
Suppose T_{α} dominates no 1-vertices, then by (5) and Lemma 6, we have $c a\left(T_{\alpha}\right) \leq\left\lfloor\frac{3(t-1)}{2}\right\rfloor \leq R(3, t-1)+t-4 \leq g(t)-3$. So without loss of generality, we can assume x_{1} is a 1 -vertex dominated by T_{α} at x. Then by the definition of V_{1}, there exists another vertex $x_{2} \in V_{1}$ such that $x x_{2}, x_{1} x_{2} \in E(G)$. By the maximality of s, if v is a 2-vertex dominated by T_{α}, we must have $v x \in E(G)$. Suppose $S_{1}\left(T_{\alpha}, y\right) \bigcup S_{1}\left(T_{\alpha}, z\right) \subseteq N(x)$, then $c a\left(T_{\alpha}\right) \leq \Delta(G)-2 \leq R(3, t)-3 \leq g(t)-3$ by Lemma 5, a contradiction. So without loss of generality, we can assume that $S_{1}\left(T_{\alpha}, y\right) \backslash N(x) \neq \emptyset$. This implies that there exists a 1 -vertex dominated by T_{α} at y, say y_{1}, such that $y y_{1} \in E(G)$ and $x y_{1} \notin E(G)$. At the same time, there also exist another vertex $y_{2} \in V_{1}$ such that $y y_{2}, y_{1} y_{2} \in E(G)$. By the maximality of s, we must have $y_{2} \in\left\{x_{1}, x_{2}\right\}$. Without loss of generality, we assume $y_{2}=x_{1}$ which implies $x_{1} y_{1}, x_{1} y \in E(G)$. By the maximality of s, we have $S_{2}\left(T_{\alpha}, z\right)=\emptyset$. Since $v y_{1} \notin E(G)$ for any $v \in S_{2}\left(T_{\alpha}, y\right),\left|S_{2}\left(T_{\alpha}\right)\right|=\left|S_{2}\left(T_{\alpha}, y\right)\right| \leq t-2$. Suppose $S_{1}\left(T_{\alpha}, z\right) \neq \emptyset$ or $S_{1}\left(T_{\alpha}, x\right) \backslash\left\{x_{1}, x_{2}\right\} \neq \emptyset$, then for any 1-vertex v dominated by T_{α}, we must have $v x_{1} \in E(G)$. For otherwise, we can replace T_{α} with two new vertex-disjoint triangles which are also vertex-disjoint to any triangle in $T \backslash\left\{T_{\alpha}\right\}$, a contradiction. Since $d_{H}\left(x_{1}\right) \leq t-1$ by (1), $S_{1}\left(T_{\alpha}\right) \leq t-1+1=t$. So $c a\left(T_{\alpha}\right)=\left|S_{1}\left(T_{\alpha}\right)\right|+\left|S_{2}\left(T_{\alpha}\right)\right| \leq t+t-2=2 t-2 \leq g(t)-3$ by Lemma 6 ,
a contradiction. So $S_{1}\left(T_{\alpha}, z\right)=S_{1}\left(T_{\alpha}, x\right) \backslash\left\{x_{1}, x_{2}\right\}=\emptyset$. By the maximality of $s, S_{1}\left(T_{\alpha}, y\right) \backslash\left\{x_{1}, x_{2}\right\}$ along with z forms an independent set in G, so $\left|S_{1}\left(T_{\alpha}, y\right) \backslash\left\{x_{1}, x_{2}\right\}\right| \leq t-2$ which implies $S_{1}\left(T_{\alpha}\right) \leq t-2+2=t$. So we also have $c a\left(T_{\alpha}\right)=\left|S_{1}\left(T_{\alpha}\right)\right|+\left|S_{2}\left(T_{\alpha}\right)\right| \leq t+t-2=2 t-2 \leq g(t)-3$ by Lemma 6 , a contradiction.
Case 2. T_{α} dominates a 3-vertex at x and $S_{1}\left(T_{\alpha}, y\right)=S_{1}\left(T_{\alpha}, z\right)=\emptyset$.
Suppose $S_{1}\left(T_{\alpha}, x\right) \neq \emptyset$. Select $u \in S_{3}\left(T_{\alpha}, x\right)$. Set $L=G\left[N_{H}(x) \bigcup\{x, y, z\} /\{u\}\right]$. Then L is a $K_{1, t-1}$-free graph, for otherwise, there must exist an independent set $M \subseteq V(L)$ of size $t-1$, then $G[M \bigcup\{x, u\}] \simeq K_{1, t}$, a contradiction. By the maximality of $s, L \nsupseteq 2 C_{3}$. It follows that $d_{H}(x)=d_{L}(x)+1-2 \leq R(3, t-1)-2$. Since $S_{1}\left(T_{\alpha}, x\right) \neq \emptyset, a\left(w, T_{\alpha}\right) \leq \frac{1}{2}$ for any $w \in S_{3}\left(T_{\alpha}, y\right) \bigcup S_{3}\left(T_{\alpha}, z\right)$ and there is no vertex $v \in V_{2}$ such that $v y, v z \in E(G)$. That is, $S_{2}\left(T_{\alpha}, y\right) \bigcup S_{2}\left(T_{\alpha}, z\right) \subseteq N(x)$. By (4), we have $\left|S_{3}\left(T_{\alpha}, y\right)\right| \leq t-2$ and $\left|S_{3}\left(T_{\alpha}, z\right)\right| \leq t-2$. Then $c a\left(T_{\alpha}\right) \leq d_{H}(x)+\frac{1}{2}(t-2)+\frac{1}{2}(t-2) \leq R(3, t-1)+t-4 \leq g(t)-3$, a contradiction. So $S_{1}\left(T_{\alpha}, x\right)=\emptyset$.

Suppose $\left|S_{2}\left(T_{\alpha}\right)\right|=0$, then by (4), we have $\max \left\{\left|S_{3}\left(T_{\alpha}, x\right)\right|,\left|S_{3}\left(T_{\alpha}, y\right)\right|,\left|S_{3}\left(T_{\alpha}, z\right)\right|\right\} \leq t-2$. This implies $c a\left(T_{\alpha}\right) \leq$ $3(t-2) \leq g(t)-3$ by Lemma 6 , a contradiction. So $\left|S_{2}\left(T_{\alpha}\right)\right|=m>0$. Without loss of generality, we can select a vertex $w \in S_{2}\left(T_{\alpha}\right)$ such that $w y, w z \in E(G)$. Now, we claim that $a\left(v, T_{\alpha}\right)=\frac{1}{2}$ for any $v \in S_{3}\left(T_{\alpha}, x\right)$. By the definition of V_{3}, for such a v, there exists another triangle, say $T_{\gamma}=d p q d$, such that v is dominated by T_{γ} at d. Then by the maximality of s, we must have $S_{1}\left(T_{\gamma}, p\right)=S_{1}\left(T_{\gamma}, q\right)=\emptyset$. By the definition of the function $a(\cdot, \cdot)$, we have $a\left(v, T_{\alpha}\right)=\frac{1}{2}$ since $S_{1}\left(T_{\alpha}, y\right)=S_{1}\left(T_{\alpha}, z\right)=\emptyset$. Let $\left|S_{2}\left(T_{\alpha}, x\right)\right|=a_{x},\left|S_{2}\left(T_{\alpha}, y\right)\right|=a_{y}$ and $\left|S_{2}\left(T_{\alpha}, z\right)\right|=a_{z}$, then $a_{x}+a_{y}+a_{z}=2 m$. By (6), we also have $\left|S_{3}\left(T_{\alpha}, x\right)\right| \leq t-1-a_{x},\left|S_{3}\left(T_{\alpha}, y\right)\right| \leq t-1-a_{y}$ and $\left|S_{3}\left(T_{\alpha}, z\right)\right| \leq t-1-a_{z}$. Suppose $m \geq 2$, then $a_{y}+a_{z} \geq 3$ and $c a\left(T_{\alpha}\right) \leq m+\frac{1}{2}\left(t-1-a_{x}\right)+\left(t-1-a_{y}\right)+\left(t-1-a_{z}\right)=\frac{5}{2}(t-1)-\frac{1}{2}\left(a_{y}+a_{z}\right) \leq \frac{5}{2} t-4 \leq g(t)-3$, a contradiction. So we have $m=1$ and then $a_{x}=0, a_{y}=a_{z}=1$, which implies $c a\left(T_{\alpha}\right) \leq 1+\frac{1}{2}(t-2)+(t-2)+(t-2)=\frac{5}{2}(t-1)-4 \leq g(t)-3$, a contradiction.

Case 3. T_{α} dominates a 3-vertex at x but $S_{1}\left(T_{\alpha}, y\right) \neq \emptyset$ (the case when $S_{1}\left(T_{\alpha}, z\right) \neq \emptyset$ is similar).
Select $u \in S_{3}\left(T_{\alpha}, x\right)$, then by the definition of V_{3}, there exists another triangle, say $T_{\beta}=a b c a$, such that $u \in S_{3}\left(T_{\beta}, a\right)$. That is, $x a, x u, a u \in E(G)$. Choose $y_{1} \in S_{1}\left(T_{\alpha}, y\right)$. Then $a\left(w, T_{\alpha}\right) \leq \frac{1}{2}$ for any $w \in S_{3}\left(T_{\alpha}, x\right) \cup S_{3}\left(T_{\alpha}, z\right)$. Suppose $\max \left\{\left|S_{1}\left(T_{\beta}, b\right)\right|,\left|S_{1}\left(T_{\beta}, c\right)\right|\right\} \geq 1$. Without loss of generality, we assume $\left|S_{1}\left(T_{\beta}, b\right)\right| \geq 1$ and $b_{1} \in S_{1}\left(T_{\beta}, b\right)$. Then by the definition of V_{1}, there exist a vertex $y_{2} \in N(y)$ and $b_{2} \in N(b)$ such that $y_{1} y_{2} \in E(G), b_{1} b_{2} \in E(G)$.

Set $U=\left\{y_{1}, y_{2}\right\} \bigcup\left\{b_{1}, b_{2}\right\}$. Then by the maximality of s, we have
(a) $|U| \leq 3$
(b) There is no vertex $v \in V(H) \backslash U$ such that $v x, v z \in E(G)$ or $v y, v z \in E(G)$. In particular, $S_{2}\left(T_{\alpha}, x\right) \bigcap S_{2}\left(T_{\alpha}, z\right)=\emptyset$ and $S_{2}\left(T_{\alpha}, y\right) \bigcap S_{2}\left(T_{\alpha}, z\right)=\emptyset$.
(c) $\{z\} \bigcup N_{H}(x) \backslash U,\{z\} \bigcup N_{H}(y) \backslash\left\{b_{1}, b_{2}\right\},\{x\} \bigcup N_{H}(z) \backslash U$ are three independent sets. In particular, $\max \left\{\mid N_{H}(x) \backslash\right.$ $U\left|,\left|N_{H}(y) \backslash\left\{b_{1}, b_{2}\right\}\right|,\left|N_{H}(z) \backslash U\right|\right\} \leq t-2$.
Next, we claim that $\left|S_{1}\left(T_{\alpha}\right)\right| \leq t-1$. First, we consider the case when $|U|=2$. Suppose $S_{1}\left(T_{\alpha}, x\right) \neq \emptyset$ (the case when $S_{1}\left(T_{\alpha}, z\right) \neq \emptyset$ is similar). If $S_{1}\left(T_{\alpha}, y\right) \backslash U \neq \emptyset$ or $S_{1}\left(T_{\alpha}, z\right) \neq \emptyset$, then every vertex in $S_{1}\left(T_{\alpha}\right) \backslash U$ must be adjacent to the same vertex in U. Since $\Delta(H) \leq t-1$ by (1) and $b_{1} \notin S_{1}\left(T_{\alpha}\right),\left|S_{1}\left(T_{\alpha}\right)\right| \leq t-1$. If $S_{1}\left(T_{\alpha}, y\right) \backslash U=S_{1}\left(T_{\alpha}, z\right)=\emptyset$, then by (c) we have $\left|N_{H}(x) \backslash \bar{U}\right| \leq t-2$ since G is a $K_{1, t}$-free graph. Note again that $b_{1} \notin S_{1}\left(T_{\alpha}\right)$, we also have $\left|S_{1}\left(T_{\alpha}\right)\right| \leq t-2+1=t-1$. So we assume $S_{1}\left(T_{\alpha}, x\right)=S_{1}\left(T_{\alpha}, z\right)=\emptyset$. Then by (c), we have $\left|N_{H}(y) \backslash\left\{b_{1}, b_{2}\right\}\right| \leq t-2$ which implies $\left|S_{1}\left(T_{\alpha}\right)\right| \leq t-2+1=t-1$ since $b_{1} \notin S_{1}\left(T_{\alpha}\right)$. Second, we consider the case when $|U|=3$. Since $|U|=3,\left|\left\{y_{1}, y_{2}\right\} \bigcap\left\{b_{1}, b_{2}\right\}\right|=1$. Let $v \in\left\{y_{1}, y_{2}\right\} \bigcap\left\{b_{1}, b_{2}\right\}$. Then by the maximality of s, every vertex in $S_{1}\left(T_{\alpha}\right) \backslash U$ must be adjacent to v. Since $d_{H}(v) \leq t-1$ by (1) and $b_{1} \notin S_{1}\left(T_{\alpha}\right),\left|S_{1}\left(T_{\alpha}\right)\right| \leq t-1$.

Let $\left|S_{1}\left(T_{\alpha}, x\right) \backslash U\right|=b_{x},\left|S_{1}\left(T_{\alpha}, y\right) \backslash U\right|=b_{y},\left|S_{1}\left(T_{\alpha}, z\right) \backslash U\right|=b_{z}$ and $\left|S_{2}\left(T_{\alpha}\right)\right|=m$. Note that $b_{1} \notin S_{1}\left(T_{\alpha}\right)$ and $|U| \leq 3$, we have $\left|U \bigcap S_{1}\left(T_{\alpha}\right)\right| \leq 2$. This implies $\left|S_{1}\left(T_{\alpha}\right)\right|-2 \leq b_{x}+b_{y}+b_{z} \leq\left|S_{1}\left(T_{\alpha}\right)\right|-1$. By (b) and (c), we have $\left|S_{3}\left(T_{\alpha}, x\right)\right| \leq t-2-m-b_{x}$ and $\left|S_{3}\left(T_{\alpha}, z\right)\right| \leq t-2-b_{z}$. Suppose $b_{x}+b_{y}+b_{z}=\left|S_{1}\left(T_{\alpha}\right)\right|-1$, then by (c), we also have $\left|S_{3}\left(T_{\alpha}, y\right)\right| \leq t-2-m-b_{y}$. This implies $c a\left(T_{\alpha}\right) \leq\left|S_{1}\left(T_{\alpha}\right)\right|+m+\frac{t-2-m-b_{x}}{2}+\left(t-2-m-b_{y}\right)+\frac{t-2-b_{z}}{2} \leq$ $\frac{\left|S_{1}\left(T_{\alpha}\right)\right|-1}{2}+1+2(t-2) \leq \frac{5}{2} t-4 \leq g(t)-3$ by Lemma 6, a contradiction. So $b_{x}+b_{y}+b_{z}=\left|S_{1}\left(T_{\alpha}\right)\right|-2$ which implies $|U|=3$. By (c), we have $\left|N_{H}(y) \backslash U\right| \leq\left|N_{H}(y) \backslash\left\{b_{1}, b_{2}\right\}\right|-1 \leq t-3$ and then $\left|S_{3}\left(T_{\alpha}, y\right)\right| \leq t-3-m-b_{y}$. So $c a\left(T_{\alpha}\right) \leq\left|S_{1}\left(T_{\alpha}\right)\right|+m+\frac{t-2-m-b_{x}}{2}+\left(t-3-m-b_{y}\right)+\frac{t-2-b_{z}}{2} \leq \frac{\left|A_{2}\right|-2}{2}+2+2 t-5 \leq \frac{5}{2} t-4 \leq g(t)-3$ by Lemma 6 , a contradiction.

So for any 3-vertex $v \in S_{3}\left(T_{\alpha}, x\right)$ where $T_{\alpha}=x y z x, \max \left\{\left|S_{1}\left(T_{\alpha}, y\right)\right|,\left|S_{1}\left(T_{\alpha}, z\right)\right|\right\} \geq 1$ and there must exist a triangle $T_{\beta}=a b c a$ such that $v \in S_{3}\left(T_{\beta}, a\right)$ and $\left|S_{1}\left(T_{\beta}, b\right)\right|=\left|S_{1}\left(T_{\beta}, c\right)\right|=0$. Then for any $v \in S_{3}\left(T_{\alpha}\right), a\left(v, T_{\alpha}\right)=0$. By the similar proof as in Case 1, we also have $c a\left(T_{\alpha}\right) \leq g(t)-3$, a contradiction.

Hence, for each integer $t \geq 4$,

$$
h(t, k) \leq \begin{cases}(R(3, t-1)+t-1)(k-1), & \text { if } R(3, t-1) \text { and } t \text { are both even; } \\ (R(3, t-1)+t)(k-1), & \text { for otherwise. }\end{cases}
$$

We complete the proof of the theorem.
By Theorems 3, 4 and 7, we have the following result.
Corollary 8. $h(4, k)=9(k-1)$ and $h(5, k)=14(k-1)$.

4. Conclusions

In Section 2, we constructively obtain a lower bound of $h(t, k)$. We firstly construct a $K_{1, t}$-free graph (in fact, a graph with independent number no more than $t-1$) with minimum degree at least t but containing at most one vertex-disjoint triangle, then we make $k-1$ copies of it. The resulting graph just implies the lower bound of $h(t, k)$. In view of this, consider a (3, t)-Ramsey graph R (that is a triangle-free graph with its independent number no more than $t-1$). The join graph $K_{1} \vee R$ must be a $K_{1, t}$-free graph on $R(3, t)$ vertices but containing at most one vertex-disjoint triangle. But we do not know whether $\delta\left(K_{1} \vee \mathcal{R}\right) \geq t$ or not. In particular, we have the following question.

Question 1. Does there exist a $(3, t)$-Ramsey graph R such that $\delta(R) \geq t-1$?
If such a graph R do exist, then $(k-1)\left(K_{1} \vee R\right)$ is a $K_{1, t}$-free graph on $R(3, t)(k-1)$ vertices but containing at most $k-1$ vertex-disjoint triangles. This implies $h(t, k) \geq R(3, t)(k-1)$. This lower bound seems more beautiful and reasonable, but whether it is proper is still unknown. Note that $R(3,3)=6, R(3,4)=9$ and $R(3,5)=14$ (see [1] on page 106). Wang [5] proved $h(3, k)=6(k-1)=R(3,3)(k-1)$. In Section 3, we prove $h(4, k)=R(3,4)(k-1)$ and $h(5, k)=R(3,5)(k-1)$. These results imply that the answer of the above question is "yes" for $3 \leq t \leq 5$. Thus we pose the following conjecture to end this paper.

Conjecture 2. For each integer $t \geq 3, h(t, k)=R(3, t)(k-1)$.

Acknowledgements

The authors appreciate the anonymous referees sincerely for their helpful comments. The third author's work was partially supported by NNSFC (10971121, 10631070).

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[2] S.A. Burr, P. Erdős, R.J. Faudree, R.H. Schelp, On the difference between consecutive Ramsey numbers, Utilitas Mathematica 35 (1989) $115-118$.
[3] S.P. Radziszowski, Small Ramsey Numbers, The Electronic Joural of Combinatorics DS1\# 12 (2009) 1-42.
[4] A.F. Sidorenko, Triangle-free regular graphs, Discrete Mathematics 91 (1991) 215-217.
[5] H. Wang, Vertex-disjoint triangles in claw-free graphs with minimum degree at least three, Combinatorica 18 (1998) 441-447.

[^0]: * Corresponding author.

 E-mail address: jlwu@sdu.edu.cn (J.-L. Wu)

