3,321 research outputs found

    On the genericity properties in networked estimation: Topology design and sensor placement

    Full text link
    In this paper, we consider networked estimation of linear, discrete-time dynamical systems monitored by a network of agents. In order to minimize the power requirement at the (possibly, battery-operated) agents, we require that the agents can exchange information with their neighbors only \emph{once per dynamical system time-step}; in contrast to consensus-based estimation where the agents exchange information until they reach a consensus. It can be verified that with this restriction on information exchange, measurement fusion alone results in an unbounded estimation error at every such agent that does not have an observable set of measurements in its neighborhood. To over come this challenge, state-estimate fusion has been proposed to recover the system observability. However, we show that adding state-estimate fusion may not recover observability when the system matrix is structured-rank (SS-rank) deficient. In this context, we characterize the state-estimate fusion and measurement fusion under both full SS-rank and SS-rank deficient system matrices.Comment: submitted for IEEE journal publicatio

    Controlling edge dynamics in complex networks

    Get PDF
    The interaction of distinct units in physical, social, biological and technological systems naturally gives rise to complex network structures. Networks have constantly been in the focus of research for the last decade, with considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Here we introduce and evaluate a dynamical process defined on the edges of a network, and demonstrate that the controllability properties of this process significantly differ from simple nodal dynamics. Evaluation of real-world networks indicates that most of them are more controllable than their randomized counterparts. We also find that transcriptional regulatory networks are particularly easy to control. Analytic calculations show that networks with scale-free degree distributions have better controllability properties than uncorrelated networks, and positively correlated in- and out-degrees enhance the controllability of the proposed dynamics.Comment: Preprint. 24 pages, 4 figures, 2 tables. Source code available at http://github.com/ntamas/netctr

    Twin subgraphs and core-semiperiphery-periphery structures

    Full text link
    A standard approach to reduce the complexity of very large networks is to group together sets of nodes into clusters according to some criterion which reflects certain structural properties of the network. Beyond the well-known modularity measures defining communities, there are criteria based on the existence of similar or identical connection patterns of a node or sets of nodes to the remainder of the network. A key notion in this context is that of structurally equivalent or twin nodes, displaying exactly the same connection pattern to the remainder of the network. The first goal of this paper is to extend this idea to subgraphs of arbitrary order of a given network, by means of the notions of T-twin and F-twin subgraphs. This is motivated by the need to provide a systematic approach to the analysis of core-semiperiphery-periphery (CSP) structures, a notion which somehow lacks a formal treatment in the literature. The goal is to provide an analytical framework accommodating and extending the idea that the unique (ideal) core-periphery (CP) structure is a 2-partitioned K2. We provide a formal definition of CSP structures in terms of core eccentricities and periphery degrees, with semiperiphery vertices acting as intermediaries. The T-twin and F-twin notions then make it possible to reduce the large number of resulting structures by identifying isomorphic substructures which share the connection pattern to the remainder of the graph, paving the way for the decomposition and enumeration of CSP structures. We compute the resulting CSP structures up to order six. We illustrate the scope of our results by analyzing a subnetwork of the network of 1994 metal manufactures trade. Our approach can be further applied in complex network theory and seems to have many potential extensions
    • …
    corecore