279 research outputs found

    Tournaments, 4-uniform hypergraphs, and an exact extremal result

    Full text link
    We consider 44-uniform hypergraphs with the maximum number of hyperedges subject to the condition that every set of 55 vertices spans either 00 or exactly 22 hyperedges and give a construction, using quadratic residues, for an infinite family of such hypergraphs with the maximum number of hyperedges. Baber has previously given an asymptotically best-possible result using random tournaments. We give a connection between Baber's result and our construction via Paley tournaments and investigate a `switching' operation on tournaments that preserves hypergraphs arising from this construction.Comment: 23 pages, 6 figure

    EXTENDING POTOÄŒNIK AND Å AJNA'S CONDITIONS ON VERTEX-TRANSITIVE SELF-COMPEMENTARY k-HYPERGRAPHS

    Get PDF
    Abstract : Let l be a positive integer, k = 2l or k = 2l + 1 and let n be a positive integer with n≡1n \equiv 1 (mod 2l+12^{l+1}). Potocnik and Sajna showed that if there exists a vertex-transitive self-complementary k-hypergraph of order n, then for every prime p we have pn(p)≡1(mod2l+1)p^{n_{(p)}} \equiv 1 \pmod {2^{l+1}} (where n(p)n_{(p)} denotes the largest integer ii for which pip^i divides nn). Here we extend their result to any integer k and a larger class of integers n

    On the number of 4-cycles in a tournament

    Full text link
    If TT is an nn-vertex tournament with a given number of 33-cycles, what can be said about the number of its 44-cycles? The most interesting range of this problem is where TT is assumed to have câ‹…n3c\cdot n^3 cyclic triples for some c>0c>0 and we seek to minimize the number of 44-cycles. We conjecture that the (asymptotic) minimizing TT is a random blow-up of a constant-sized transitive tournament. Using the method of flag algebras, we derive a lower bound that almost matches the conjectured value. We are able to answer the easier problem of maximizing the number of 44-cycles. These questions can be equivalently stated in terms of transitive subtournaments. Namely, given the number of transitive triples in TT, how many transitive quadruples can it have? As far as we know, this is the first study of inducibility in tournaments.Comment: 11 pages, 5 figure

    Self-Complementary Hypergraphs

    Get PDF
    In this thesis, we survey the current research into self-complementary hypergraphs, and present several new results. We characterize the cycle type of the permutations on n elements with order equal to a power of 2 which are k-complementing. The k-complementing permutations map the edges of a k-uniform hypergraph to the edges of its complement. This yields a test to determine whether a finite permutation is a k-complementing permutation, and an algorithm for generating all self-complementary k-uniform hypergraphs of order n, up to isomorphism, for feasible n. We also obtain an alternative description of the known necessary and sufficient conditions on the order of a self-complementary k-uniform hypergraph in terms of the binary representation of k. We examine the orders of t-subset-regular self-complementary uniform hyper- graphs. These form examples of large sets of two isomorphic t-designs. We restate the known necessary conditions on the order of these structures in terms of the binary representation of the rank k, and we construct 1-subset-regular self-complementary uniform hypergraphs to prove that these necessary conditions are sufficient for all ranks k in the case where t = 1. We construct vertex transitive self-complementary k-hypergraphs of order n for all integers n which satisfy the known necessary conditions due to Potocnik and Sajna, and consequently prove that these necessary conditions are also sufficient. We also generalize Potocnik and Sajna's necessary conditions on the order of a vertex transitive self-complementary uniform hypergraph for certain ranks k to give neces- sary conditions on the order of these structures when they are t-fold-transitive. In addition, we use Burnside's characterization of transitive groups of prime degree to determine the group of automorphisms and antimorphisms of certain vertex transitive self-complementary k-uniform hypergraphs of prime order, and we present an algorithm to generate all such hypergraphs. Finally, we examine the orders of self-complementary non-uniform hypergraphs, including the cases where these structures are t-subset-regular or t-fold-transitive. We find necessary conditions on the order of these structures, and we present constructions to show that in certain cases these necessary conditions are sufficient.University of OttawaDoctor of Philosophy in Mathematic

    Induced subgraph density. VI. Bounded VC-dimension

    Full text link
    We confirm a conjecture of Fox, Pach, and Suk, that for every d>0d>0, there exists c>0c>0 such that every nn-vertex graph of VC-dimension at most dd has a clique or stable set of size at least ncn^c. This implies that, in the language of model theory, every graph definable in NIP structures has a clique or anti-clique of polynomial size, settling a conjecture of Chernikov, Starchenko, and Thomas. Our result also implies that every two-colourable tournament satisfies the tournament version of the Erd\H{o}s-Hajnal conjecture, which completes the verification of the conjecture for six-vertex tournaments. The result extends to uniform hypergraphs of bounded VC-dimension as well. The proof method uses the ultra-strong regularity lemma for graphs of bounded VC-dimension proved by Lov\'asz and Szegedy and the method of iterative sparsification introduced by the authors in an earlier paper.Comment: 11 pages, minor revision

    Hypergraph Learning with Line Expansion

    Full text link
    Previous hypergraph expansions are solely carried out on either vertex level or hyperedge level, thereby missing the symmetric nature of data co-occurrence, and resulting in information loss. To address the problem, this paper treats vertices and hyperedges equally and proposes a new hypergraph formulation named the \emph{line expansion (LE)} for hypergraphs learning. The new expansion bijectively induces a homogeneous structure from the hypergraph by treating vertex-hyperedge pairs as "line nodes". By reducing the hypergraph to a simple graph, the proposed \emph{line expansion} makes existing graph learning algorithms compatible with the higher-order structure and has been proven as a unifying framework for various hypergraph expansions. We evaluate the proposed line expansion on five hypergraph datasets, the results show that our method beats SOTA baselines by a significant margin

    The random graph

    Full text link
    Erd\H{o}s and R\'{e}nyi showed the paradoxical result that there is a unique (and highly symmetric) countably infinite random graph. This graph, and its automorphism group, form the subject of the present survey.Comment: Revised chapter for new edition of book "The Mathematics of Paul Erd\H{o}s

    A simultaneous generalization of independence and disjointness in boolean algebras

    Full text link
    We give a definition of some classes of boolean algebras generalizing free boolean algebras; they satisfy a universal property that certain functions extend to homomorphisms. We give a combinatorial property of generating sets of these algebras, which we call n-independent. The properties of these classes (n-free and omega-free boolean algebras) are investigated. These include connections to hypergraph theory and cardinal invariants on these algebras. Related cardinal functions, nnInd, which is the supremum of the cardinalities of n-independent subsets; i_n, the minimum size of a maximal n-independent subset; and i_omega, the minimum size of an omega-independent subset, are introduced and investigated. The values of i_n and i_omega on P(omega)/fin are shown to be independent of ZFC.Comment: Sumbitted to Orde
    • …
    corecore