4,920 research outputs found

    A framework for active software engineering ontology

    Get PDF
    The passive structure of ontologies results in the ineffectiveness to access and manage the knowledge captured in them. This research has developed a framework for active Software Engineering Ontology based on a multi-agent system. It assists software development teams to effectively access, manage and share software engineering knowledge as well as project information to enable effective and efficient communication and coordination among teams. The framework has been evaluated through the prototype system as proof-of-concept experiments

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    LIFEDATA - a framework for traceable active learning projects

    Get PDF
    Active Learning has become a popular method for iteratively improving data-intensive Artificial Intelligence models. However, it often presents a significant challenge when dealing with large volumes of volatile data in projects, as with an Active Learning loop. This paper introduces LIFEDATA, a Python- based framework designed to assist developers in implementing Active Learning projects focusing on traceability. It supports seamless tracking of all artifacts, from data selection and labeling to model interpretation, thus promoting transparency throughout the entire model learning process and enhancing error debugging efficiency while ensuring experiment reproducibility. To showcase its applicability, we present two life science use cases. Moreover, the paper proposes an algorithm that combines query strategies to demonstrate LIFEDATA’s ability to reduce data labeling effort

    Tackling Version Management and Reproducibility in MLOps

    Get PDF
    A crescente adoção de soluções baseadas em machine learning (ML) exige avanços na aplicação das melhores práticas para manter estes sistemas em produção. Operações de machine learning (MLOps) incorporam princípios de automação contínua ao desenvolvimento de modelos de ML, promovendo entrega, monitoramento e treinamento contínuos. Devido a vários fatores, como a natureza experimental do desenvolvimento de modelos de ML ou a necessidade de otimizações derivadas de mudanças nas necessidades de negócios, espera-se que os cientistas de dados criem vários experimentos para desenvolver um modelo ou preditor que atenda satisfatoriamente aos principais desafios de um dado problema. Como a reavaliação de modelos é uma necessidade constante, metadados são constantemente produzidos devido a várias execuções de experimentos. Esses metadados são conhecidos como artefatos ou ativos de ML. A linhagem adequada entre esses artefatos possibilita a recriação do ambiente em que foram desenvolvidos, facilitando a reprodutibilidade do modelo. Vincular informações de experimentos, modelos, conjuntos de dados, configurações e alterações de código requer organização, rastreamento, manutenção e controle de versão adequados. Este trabalho investigará as melhores práticas, problemas atuais e desafios relacionados ao gerenciamento e versão de artefatos e aplicará esse conhecimento para desenvolver um fluxo de trabalho que suporte a engenharia e operacionalização de ML, aplicando princípios de MLOps que facilitam a reprodutibilidade dos modelos. Cenários cobrindo preparação de dados, geração de modelo, comparação entre versões de modelo, implantação, monitoramento, depuração e re-treinamento demonstraram como as estruturas e ferramentas selecionadas podem ser integradas para atingir esse objetivo.The growing adoption of machine learning solutions requires advancements in applying best practices to maintain artificial intelligence systems in production. Machine Learning Operations (MLOps) incorporates DevOps principles into machine learning development, promoting automation, continuous delivery, monitoring, and training capabilities. Due to multiple factors, such as the experimental nature of the machine learning process or the need for model optimizations derived from changes in business needs, data scientists are expected to create multiple experiments to develop a model or predictor that satisfactorily addresses the main challenges of a given problem. Since the re-evaluation of models is a constant need, metadata is constantly produced due to multiple experiment runs. This metadata is known as ML artifacts or assets. The proper lineage between these artifacts enables environment recreation, facilitating model reproducibility. Linking information from experiments, models, datasets, configurations, and code changes requires proper organization, tracking, maintenance, and version control of these artifacts. This work will investigate the best practices, current issues, and open challenges related to artifact versioning and management and apply this knowledge to develop an ML workflow that supports ML engineering and operationalization, applying MLOps principles that facilitate model reproducibility. Scenarios covering data preparation, model generation, comparison between model versions, deployment, monitoring, debugging, and retraining demonstrated how the selected frameworks and tools could be integrated to achieve that goal
    corecore