3,349 research outputs found

    Modelling Data Processing for Interactive Scores Using Coloured Petri Nets

    Get PDF
    International audienceI-score is a system for the composition and execution of interactive multimedia scores. It uses Hierarchical Time Stream Petri Nets (HTSPN) to build an execution model of the scores. Nowadays, composers have increasingly needed to represent and manipulate complex data in their multimedia scenarios. However, HTSPN formalism does not allow to handle data. In this work, we propose a model to execute interactive multimedia scores based on Coloured Petri Nets (CPN). Our work extends the current execution model of i-score with the capability to handle complex data. Our approach consists in developing CPN modules for reading, appending and reversing audio files. We use CPN Tools for prototyping, simulating and verifying our model and discuss how to represent fundamental signal processing functions, conditionals or loops

    A group learning management method for intelligent tutoring systems

    Get PDF
    In this paper we propose a group management specification and execution method that seeks a compromise between simple course design and complex adaptive group interaction. This is achieved through an authoring method that proposes predefined scenarios to the author. These scenarios already include complex learning interaction protocols in which student and group models use and update are automatically included. The method adopts ontologies to represent domain and student models, and object Petri nets to specify the group interaction protocols. During execution, the method is supported by a multi-agent architecture

    Checking and Enforcing Security through Opacity in Healthcare Applications

    Full text link
    The Internet of Things (IoT) is a paradigm that can tremendously revolutionize health care thus benefiting both hospitals, doctors and patients. In this context, protecting the IoT in health care against interference, including service attacks and malwares, is challenging. Opacity is a confidentiality property capturing a system's ability to keep a subset of its behavior hidden from passive observers. In this work, we seek to introduce an IoT-based heart attack detection system, that could be life-saving for patients without risking their need for privacy through the verification and enforcement of opacity. Our main contributions are the use of a tool to verify opacity in three of its forms, so as to detect privacy leaks in our system. Furthermore, we develop an efficient, Symbolic Observation Graph (SOG)-based algorithm for enforcing opacity

    A model checker for performance and dependability properties

    Get PDF
    Markov chains are widely used in the context of performance and reliability evaluation of systems of various nature. Model checking of such chains with respect to a given (branching) temporal logic formula has been proposed for both the discrete [8] and the continuous time setting [1], [3]. In this short paper, we describe the prototype model checker EMC2E \vdash M C^2 for discrete and continuous-time Markov chains, where properties are expressed in appropriate extensions of CTL.We illustrate the general benefits of this approach and discuss the structure of the tool

    Quantitative Analysis of Opacity in Cloud Computing Systems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Federated cloud systems increase the reliability and reduce the cost of the computational support. The resulting combination of secure private clouds and less secure public clouds, together with the fact that resources need to be located within different clouds, strongly affects the information flow security of the entire system. In this paper, the clouds as well as entities of a federated cloud system are assigned security levels, and a probabilistic flow sensitive security model for a federated cloud system is proposed. Then the notion of opacity --- a notion capturing the security of information flow --- of a cloud computing systems is introduced, and different variants of quantitative analysis of opacity are presented. As a result, one can track the information flow in a cloud system, and analyze the impact of different resource allocation strategies by quantifying the corresponding opacity characteristics
    corecore