1,217 research outputs found

    Safe abstractions of data encodings in formal security protocol models

    Get PDF
    When using formal methods, security protocols are usually modeled at a high level of abstraction. In particular, data encoding and decoding transformations are often abstracted away. However, if no assumptions at all are made on the behavior of such transformations, they could trivially lead to security faults, for example leaking secrets or breaking freshness by collapsing nonces into constants. In order to address this issue, this paper formally states sufficient conditions, checkable on sequential code, such that if an abstract protocol model is secure under a Dolev-Yao adversary, then a refined model, which takes into account a wide class of possible implementations of the encoding/decoding operations, is implied to be secure too under the same adversary model. The paper also indicates possible exploitations of this result in the context of methods based on formal model extraction from implementation code and of methods based on automated code generation from formally verified model

    Verifying security protocols by knowledge analysis

    Get PDF
    This paper describes a new interactive method to analyse knowledge of participants involved in security protocols and further to verify the correctness of the protocols. The method can detect attacks and flaws involving interleaving sessions besides normal attacks. The implementation of the method in a generic theorem proving environment, namely Isabelle, makes the verification of protocols mechanical and efficient; it can verify a medium-sized security protocol in less than ten seconds. As an example, the paper finds the flaw in the Needham-Schroeder public key authentication protocol and proves the secure properties and guarantees of the protocol with Lowe's fix to show the effectiveness of this method

    A Trace Logic for Local Security Properties

    Get PDF
    We propose a new simple \emph{trace} logic that can be used to specify \emph{local security properties}, i.e. security properties that refer to a single participant of the protocol specification. Our technique allows a protocol designer to provide a formal specification of the desired security properties, and integrate it naturally into the design process of cryptographic protocols. Furthermore, the logic can be used for formal verification. We illustrate the utility of our technique by exposing new attacks on the well studied protocol TMN.Comment: New versio

    Development of security strategies using Kerberos in wireless networks

    Get PDF
    Authentication is the primary function used to reduce the risk of illegitimate access to IT services of any organisation. Kerberos is a widely used authentication protocol for authentication and access control mechanisms. This thesis presents the development of security strategies using Kerberos authentication protocol in wireless networks, Kerberos-Key Exchange protocol, Kerberos with timed-delay, Kerberos with timed-delay and delayed decryption, Kerberos with timed-delay, delayed decryption and password encryption properties. This thesis also includes a number of other research works such as, frequently key renewal under pseudo-secure conditions and shut down of the authentication server to external access temporarily to allow for secure key exchange. A general approach for the analysis and verification of authentication properties as well as Kerberos authentication protocol are presented. Existing authentication mechanisms coupled with strong encryption techniques are considered, investigated and analysed in detail. IEEE 802.1x standard, IEEE 802.11 wireless communication networks are also considered. First, existing security and authentication approaches for Kerberos authentication protocol are critically analysed with the discussions on merits and weaknesses. Then relevant terminology is defined and explained. Since Kerberos exhibits some vulnerabilities, the existing solutions have not treated the possibilities of more than one authentication server in a strict sense. A three way authentication mechanism addresses possible solution to this problem. An authentication protocol has been developed to improve the three way authentication mechanism for Kerberos. Dynamically renewing keys under pseudo-secure situations involves a temporary interruption to link/server access. After describing and analysing a protocol to achieve improved security for authentication, an analytical method is used to evaluate the cost in terms of the degradation of system performability. Various results are presented. An approach that involves a new authentication protocol is proposed. This new approach combines delaying decryption with timed authentication by using passwords and session keys for authentication purposes, and frequent key renewal under secure conditions. The analysis and verification of authentication properties and results of the designed protocol are presented and discussed. Protocols often fail when they are analysed critically. Formal approaches have emerged to analyse protocol failures. Abstract languages are designed especially for the description of communication patterns. A notion of rank functions is introduced for analysing purposes as well. An application of this formal approach to a newly designed authentication protocol that combines delaying the decryption process with timed authentication is presented. Formal methods for verifying cryptographic protocols are created to assist in ensuring that authentication protocols meet their specifications. Model checking techniques such as Communicating Sequential Processes (CSP) and Failure Divergence Refinement (FDR) checker, are widely acknowledged for effectively and efficiently revealing flaws in protocols faster than most other contemporaries. Essentially, model checking involves a detailed search of all the states reachable by the components of a protocol model. In the models that describe authentication protocols, the components, regarded as processes, are the principals including intruder (attacker) and parameters for authentication such as keys, nonces, tickets, and certificates. In this research, an automated generation tool, CASPER is used to produce CSP descriptions. Proposed protocol models rely on trusted third parties in authentication transactions while intruder capabilities are based on possible inductions and deductions. This research attempts to combine the two methods in model checking in order to realise an abstract description of intruder with enhanced capabilities. A target protocol of interest is that of Kerberos authentication protocol. The process of increasing the strength of security mechanisms usually impacts on performance thresholds. In recognition of this fact, the research adopts an analytical method known as spectral expansion to ascertain the level of impact, and which resulting protocol amendments will have on performance. Spectral expansion is based on state exploration. This implies that it is subject, as model checking, to the state explosion problem. The performance characteristics of amended protocols are examined relative to the existing protocols. Numerical solutions are presented for all models developed

    A Survey on Authentication and Key Agreement Protocols in Heterogeneous Networks

    Full text link
    Unlike current closed systems such as 2nd and 3rd generations where the core network is controlled by a sole network operator, multiple network operators will coexist and manage the core network in Next Generation Networks (NGNs). This open architecture and the collaboration between different network operators will support ubiquitous connectivity and thus enhances users' experience. However, this brings to the fore certain security issues which must be addressed, the most important of which is the initial Authentication and Key Agreement (AKA) to identify and authorize mobile nodes on these various networks. This paper looks at how existing research efforts the HOKEY WG, Mobile Ethernet and 3GPP frameworks respond to this new environment and provide security mechanisms. The analysis shows that most of the research had realized the openness of the core network and tried to deal with it using different methods. These methods will be extensively analysed in order to highlight their strengths and weaknesses

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view
    • …
    corecore