35,484 research outputs found

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    CoInDiVinE: Parallel Distributed Model Checker for Component-Based Systems

    Full text link
    CoInDiVinE is a tool for parallel distributed model checking of interactions among components in hierarchical component-based systems. The tool extends the DiVinE framework with a new input language (component-interaction automata) and a property specification logic (CI-LTL). As the language differs from the input language of DiVinE, our tool employs a new state space generation algorithm that also supports partial order reduction. Experiments indicate that the tool has good scaling properties when run in parallel setting.Comment: In Proceedings PDMC 2011, arXiv:1111.006

    Searching for a Solution to Program Verification=Equation Solving in CCS

    Get PDF
    International audienceUnder non-exponential discounting, we develop a dynamic theory for stopping problems in continuous time. Our framework covers discount functions that induce decreasing impatience. Due to the inherent time inconsistency, we look for equilibrium stopping policies, formulated as fixed points of an operator. Under appropriate conditions, fixed-point iterations converge to equilibrium stopping policies. This iterative approach corresponds to the hierarchy of strategic reasoning in game theory and provides ā€œagent-specificā€ results: it assigns one specific equilibrium stopping policy to each agent according to her initial behavior. In particular, it leads to a precise mathematical connection between the naive behavior and the sophisticated one. Our theory is illustrated in a real options model

    The Dafny Integrated Development Environment

    Full text link
    In recent years, program verifiers and interactive theorem provers have become more powerful and more suitable for verifying large programs or proofs. This has demonstrated the need for improving the user experience of these tools to increase productivity and to make them more accessible to non-experts. This paper presents an integrated development environment for Dafny-a programming language, verifier, and proof assistant-that addresses issues present in most state-of-the-art verifiers: low responsiveness and lack of support for understanding non-obvious verification failures. The paper demonstrates several new features that move the state-of-the-art closer towards a verification environment that can provide verification feedback as the user types and can present more helpful information about the program or failed verifications in a demand-driven and unobtrusive way.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    Web Services: A Process Algebra Approach

    Full text link
    It is now well-admitted that formal methods are helpful for many issues raised in the Web service area. In this paper we present a framework for the design and verification of WSs using process algebras and their tools. We define a two-way mapping between abstract specifications written using these calculi and executable Web services written in BPEL4WS. Several choices are available: design and correct errors in BPEL4WS, using process algebra verification tools, or design and correct in process algebra and automatically obtaining the corresponding BPEL4WS code. The approaches can be combined. Process algebra are not useful only for temporal logic verification: we remark the use of simulation/bisimulation both for verification and for the hierarchical refinement design method. It is worth noting that our approach allows the use of any process algebra depending on the needs of the user at different levels (expressiveness, existence of reasoning tools, user expertise)

    Safety verification of asynchronous pushdown systems with shaped stacks

    Full text link
    In this paper, we study the program-point reachability problem of concurrent pushdown systems that communicate via unbounded and unordered message buffers. Our goal is to relax the common restriction that messages can only be retrieved by a pushdown process when its stack is empty. We use the notion of partially commutative context-free grammars to describe a new class of asynchronously communicating pushdown systems with a mild shape constraint on the stacks for which the program-point coverability problem remains decidable. Stacks that fit the shape constraint may reach arbitrary heights; further a process may execute any communication action (be it process creation, message send or retrieval) whether or not its stack is empty. This class extends previous computational models studied in the context of asynchronous programs, and enables the safety verification of a large class of message passing programs

    Synthesis of Recursive ADT Transformations from Reusable Templates

    Full text link
    Recent work has proposed a promising approach to improving scalability of program synthesis by allowing the user to supply a syntactic template that constrains the space of potential programs. Unfortunately, creating templates often requires nontrivial effort from the user, which impedes the usability of the synthesizer. We present a solution to this problem in the context of recursive transformations on algebraic data-types. Our approach relies on polymorphic synthesis constructs: a small but powerful extension to the language of syntactic templates, which makes it possible to define a program space in a concise and highly reusable manner, while at the same time retains the scalability benefits of conventional templates. This approach enables end-users to reuse predefined templates from a library for a wide variety of problems with little effort. The paper also describes a novel optimization that further improves the performance and scalability of the system. We evaluated the approach on a set of benchmarks that most notably includes desugaring functions for lambda calculus, which force the synthesizer to discover Church encodings for pairs and boolean operations

    Model-based Testing

    Get PDF
    This paper provides a comprehensive introduction to a framework for formal testing using labelled transition systems, based on an extension and reformulation of the ioco theory introduced by Tretmans. We introduce the underlying models needed to specify the requirements, and formalise the notion of test cases. We discuss conformance, and in particular the conformance relation ioco. For this relation we prove several interesting properties, and we provide algorithms to derive test cases (either in batches, or on the fly)
    • ā€¦
    corecore