6 research outputs found

    On the Equivalence of Observation Structures for Petri Net Generators

    Get PDF
    Observation structures considered for Petri net generators usually assume that the firing of transitions may be observed through a static mask and that the marking of some places may be measurable. These observation structures, however, are rather limited, namely they do not cover all cases of practical interest where complex observations are possible. We consider in this paper more general ones, by correspondingly defining two new classes of Petri net generators: labeled Petri nets with outputs (LPNOs) and adaptive labeled Petri nets (ALPNs). To compare the modeling power of different Petri net generators, the notion of observation equivalence is proposed. ALPNs are shown to be the class of bounded generators possessing the highest modeling power. Looking for bridges between the different formalisms, we first present a general procedure to convert a bounded LPNO into an equivalent ALPN or even into an equivalent labeled Petri net (if any exists). Finally, we discuss the possibility of converting an unbounded LPNO into an equivalent ALPN

    Basis marking representation of Petri net reachability spaces and its application to the reachability problem

    Get PDF
    In this paper a compact representation of the reachability graph of a Petri net is proposed. The transition set of a Petri net is partitioned into the subsets of explicit and implicit transitions, in such a way that the subnet induced by implicit transitions does not contain directed cycles. The firing of implicit transitions can be abstracted so that the reachability set of the net can be completely characterized by a subset of reachable markings called basis makings. We show that to determine a max-cardinality-T_I basis partition is an NPhard problem, but a max-set-T_I basis partition can be determined in polynomial time. The generalized version of the marking reachability problem in a Petri net can be solved by a practically efficient algorithm based on the basis reachability graph. Finally this approach is further extended to unbounded nets

    Verification of current-state opacity using Petri nets

    No full text
    This paper addresses the problem of current-state opacity of discrete event systems (DES) modeled with Petri nets. A system is said to be current-state opaque if the intruder who only has partial observations on the system's behavior is never able to infer that the current state of the system is within a set of secret states. Based on the notion of basis markings, an efficient approach to verifying current-state opacity in bounded Petri nets is proposed, without computing the whole reachability set or exhaustively enumerating the set of markings consistent with the observation. An example showing the efficiency of the approach is presented
    corecore