513 research outputs found

    Analysis of the Security of BB84 by Model Checking

    Full text link
    Quantum Cryptography or Quantum key distribution (QKD) is a technique that allows the secure distribution of a bit string, used as key in cryptographic protocols. When it was noted that quantum computers could break public key cryptosystems based on number theory extensive studies have been undertaken on QKD. Based on quantum mechanics, QKD offers unconditionally secure communication. Now, the progress of research in this field allows the anticipation of QKD to be available outside of laboratories within the next few years. Efforts are made to improve the performance and reliability of the implemented technologies. But several challenges remain despite this big progress. The task of how to test the apparatuses of QKD For example did not yet receive enough attention. These devises become complex and demand a big verification effort. In this paper we are interested in an approach based on the technique of probabilistic model checking for studying quantum information. Precisely, we use the PRISM tool to analyze the security of BB84 protocol and we are focused on the specific security property of eavesdropping detection. We show that this property is affected by the parameters of quantum channel and the power of eavesdropper.Comment: 12 Pages, IJNS

    Automated Verification of Quantum Protocols using MCMAS

    Full text link
    We present a methodology for the automated verification of quantum protocols using MCMAS, a symbolic model checker for multi-agent systems The method is based on the logical framework developed by D'Hondt and Panangaden for investigating epistemic and temporal properties, built on the model for Distributed Measurement-based Quantum Computation (DMC), an extension of the Measurement Calculus to distributed quantum systems. We describe the translation map from DMC to interpreted systems, the typical formalism for reasoning about time and knowledge in multi-agent systems. Then, we introduce dmc2ispl, a compiler into the input language of the MCMAS model checker. We demonstrate the technique by verifying the Quantum Teleportation Protocol, and discuss the performance of the tool.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    Model checking quantum Markov chains

    Full text link
    Although the security of quantum cryptography is provable based on the principles of quantum mechanics, it can be compromised by the flaws in the design of quantum protocols and the noise in their physical implementations. So, it is indispensable to develop techniques of verifying and debugging quantum cryptographic systems. Model-checking has proved to be effective in the verification of classical cryptographic protocols, but an essential difficulty arises when it is applied to quantum systems: the state space of a quantum system is always a continuum even when its dimension is finite. To overcome this difficulty, we introduce a novel notion of quantum Markov chain, specially suited to model quantum cryptographic protocols, in which quantum effects are entirely encoded into super-operators labelling transitions, leaving the location information (nodes) being classical. Then we define a quantum extension of probabilistic computation tree logic (PCTL) and develop a model-checking algorithm for quantum Markov chains.Comment: Journal versio

    QPMC: A model checker for quantum programs and protocols

    Full text link
    © Springer International Publishing Switzerland 2015. We present QPMC (Quantum Program/Protocol Model Checker), an extension of the probabilistic model checker ISCASMC to automatically verify quantum programs and quantum protocols. QPMC distinguishes itself from the previous quantum model checkers proposed in the literature in that it works for general quantum programs and protocols, not only those using Clifford operations. A command-line version of QPMC is available at http://iscasmc.ios.ac.cn/tool/qmc/

    A Holistic Approach in Embedded System Development

    Full text link
    We present pState, a tool for developing "complex" embedded systems by integrating validation into the design process. The goal is to reduce validation time. To this end, qualitative and quantitative properties are specified in system models expressed as pCharts, an extended version of hierarchical state machines. These properties are specified in an intuitive way such that they can be written by engineers who are domain experts, without needing to be familiar with temporal logic. From the system model, executable code that preserves the verified properties is generated. The design is documented on the model and the documentation is passed as comments into the generated code. On the series of examples we illustrate how models and properties are specified using pState.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338
    • …
    corecore