20 research outputs found

    LNCS

    Get PDF
    Despite researchers’ efforts in the last couple of decades, reachability analysis is still a challenging problem even for linear hybrid systems. Among the existing approaches, the most practical ones are mainly based on bounded-time reachable set over-approximations. For the purpose of unbounded-time analysis, one important strategy is to abstract the original system and find an invariant for the abstraction. In this paper, we propose an approach to constructing a new kind of abstraction called conic abstraction for affine hybrid systems, and to computing reachable sets based on this abstraction. The essential feature of a conic abstraction is that it partitions the state space of a system into a set of convex polyhedral cones which is derived from a uniform conic partition of the derivative space. Such a set of polyhedral cones is able to cut all trajectories of the system into almost straight segments so that every segment of a reach pipe in a polyhedral cone tends to be straight as well, and hence can be over-approximated tightly by polyhedra using similar techniques as HyTech or PHAVer. In particular, for diagonalizable affine systems, our approach can guarantee to find an invariant for unbounded reachable sets, which is beyond the capability of bounded-time reachability analysis tools. We implemented the approach in a tool and experiments on benchmarks show that our approach is more powerful than SpaceEx and PHAVer in dealing with diagonalizable systems

    Hybrid Automata in Systems Biology: How far can we go?

    Get PDF
    We consider the reachability problem on semi-algebraic hybrid automata. In particular, we deal with the effective cost that has to be afforded to solve reachability through first-order satisfiability. The analysis we perform with some existing tools shows that even simple examples cannot be efficiently solved. We need approximations to reduce the number of variables in our formulae: this is the main source of time computation growth. We study standard approximation methods based on Taylor polynomials and ad-hoc strategies to solve the problem and we show their effectiveness on the repressilator case study

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Instability and Overshoots of Solutions For A Class of Homogeneous Hybrid Systems By Lyapunov-like Analysis

    Full text link
    For a class of homogeneous hybrid systems we present a generalization to the hybrid systems framework of Chetaev's theorem and we propose a set of Lyapunov-like conditions for studying instability of the point x e = 0 and overshoots of solutions (namely when the norm of the solution vector x at some time instant exceeds the norm of the initial condition of x). Based on these results, we design a sum of squares algorithm that constructs a suitable Lyapunov-like function to fulfill such conditions.Peer reviewe

    Modeling and analyzing biomolecular networks

    Full text link
    corecore