310,414 research outputs found

    Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    Get PDF
    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities

    Technology transfer program: Perspective

    Get PDF
    Most of NASA's technology transfer activities are in the area of land use (development, suitability, and planning); forestry (including wildlife and range and vegetation inventories) agriculture related activities; and water resources. The technology dissemination function is exercised through three regional applications centers which are involved in 91 applications projects within 22 states. In addition there are approximately eight application system verification transfer (ASVT) projects, 21 university applications branches, institutionalized liason activities with public interest groups, and user requirements activities. As the result of budget cuts, the ASVT and user requirements and awareness programs are to be phased out at the end of FY81. The university applications programs are to be phased down and terminated by 1985. NASA will continue to work with the user more in an R & D and an applications development capacity, and not in a national scale or administrative way

    Satellite Power System (SPS) concept definition study (exhibit C)

    Get PDF
    The major outputs of the study are the constructability studies which resulted in the definition of the concepts for satellite, rectenna, and satellite construction base construction. Transportation analyses resulted in definition of heavy-lift launch vehicle, electric orbit transfer vehicle, personnel orbit transfer vehicle, and intra-orbit transfer vehicle as well as overall operations related to transportation systems. The experiment/verification program definition resulted in the definition of elements for the Ground-Based Experimental Research and Key Technology plans. These studies also resulted in conceptual approaches for early space technology verification. The cost analysis defined the overall program and cost data for all program elements and phases

    The formal verification used for the AAMP5 and AAMP-FV

    Get PDF
    The main goal of the project was two-fold: First, to investigate the feasibility of formally specifying and verifying a complex commercial microprocessor that was not expressly designed for formal verification. Second, to explore effective ways to transfer the technology to an industrial setting. The choice of the AAMP5 satisfied the first goal since the AAMP5 was not designed for formal verification, but to provide a more than threefold performance improvement while remaining object-code-compatible with the earlier AAMP2, which is used in numerous avionics applications, including the Boeing 737, 747, 757, and 767. To satisfy the technology transfer objective, we had to develop a suitable verification methodology and a formal infrastructure to make the technology usable by practicing engineers. This infrastructure includes techniques for decomposing the microcompressor verification problem into a st of verification conditions that the engineers can formulate and strategies to automate the proof of the verification conditions. The development of the infrastructure was one of the key accomplishments of the project. Most of the infrastructure and methodology are general enough to be reused for other microprocessors, certainly in the verification of another member of the AAMP family. This methodology was used to formally specify the entire microarchitecture and more than half of the instruction set and to verify a core set of eleven AAMP5 instructions representative of several instruction classes. However, the methodology and the formal machinery developed are adequate to cover most of the remaining AAMP5 instructions. Although PVS was the vehicle of the experiment, the methodology is applicable to other sufficiently powerful theorem provers

    Hardware verification at Computational Logic, Inc.

    Get PDF
    The following topics are covered in viewgraph form: (1) hardware verification; (2) Boyer-Moore logic; (3) core RISC; (4) the FM8502 fabrication, implementation specification, and pinout; (5) hardware description language; (6) arithmetic logic generator; (7) near term expected results; (8) present trends; (9) future directions; (10) collaborations and technology transfer; and (11) technology enablers

    Formal methods technology transfer: Some lessons learned

    Get PDF
    IBM has a long history in the application of formal methods to software development and verification. There have been many successes in the development of methods, tools and training to support formal methods. And formal methods have been very successful on several projects. However, the use of formal methods has not been as widespread as hoped. This presentation summarizes several approaches that have been taken to encourage more widespread use of formal methods, and discusses the results so far. The basic problem is one of technology transfer, which is a very difficult problem. It is even more difficult for formal methods. General problems of technology transfer, especially the transfer of formal methods technology, are also discussed. Finally, some prospects for the future are mentioned

    The evaluation of OSTA's APT and ASVT programs

    Get PDF
    The results of an evaluation of NASA's Applications Pilot Test (APT) and Applications System Verification and Transfer (AVST) Programs are presented. These programs sponsor cooperative projects between NASA and potential users of remote sensing (primarily LANDSAT) technology from federal and state government and the private sector. Fifteen specific projects, seven APT's and eight ASVT's, are examined as mechanisms for technology development, test, and transfer by comparing their results against stated objectives. Interviews with project managers from NASA field centers and user agency representatives provide the basis for project evaluation from NASA and user perspectives

    Dual expression recombinase based (DERB) single vector system for high throughput screening and verification of protein interactions in living cells

    Get PDF
    Identification of novel protein interactions and their mediators is fundamental in understanding cellular processes and is necessary for protein-targeted therapy. Evidently high throughput formatting of these applications in living cells would be beneficial, however no adequate system exists. We present a novel platform technology for the high throughput screening and verification of protein interactions in living cells. The platform's series of Dual Expression Recombinase Based (DERB) destiny vectors individually encode two sets of recombinase recognizable sequences for inserting the protein open reading frame (ORF) of interest, two sets of promoters and reporter tags in frame with the ORFs for detecting interactions. Introduction into living cells (prokaryotic and eukaryotic) enables the detection of protein interactions by fluorescence resonance energy transfer (FRET) or bimolecular fluorescence complementation (BiFC). The DERB platform shows advantages over current commercialized systems by DERB vectors validated through proof-of-principle experiments and the identification of an unknown interaction

    Technology validation and transfer

    Get PDF
    As farming in Ethiopia is heavily dependent on animal traction, technologies that are based on this power source were envisaged to be appropriate for better management of Vertisols. Hence, the Joint Vertisol Project (JVP) began research on improved Vertisol technology that included 1) the use of an animal-drawn broadbed maker (BBM) to facilitate surface drainage and 2) the use of appropriate seeds, fertiliser and early planting. The aim of the technology verification and transfer were to verify the economic viability and acceptability of the BBM/Vertisol technology package and to popularies the technology so as to encourage large-scale adoption. A comparison of economic returns from crop grown with Vertisol technology package and traditional methods in selected Ethiopian highlands
    corecore