2,585 research outputs found

    Using Flow Specifications of Parameterized Cache Coherence Protocols for Verifying Deadlock Freedom

    Full text link
    We consider the problem of verifying deadlock freedom for symmetric cache coherence protocols. In particular, we focus on a specific form of deadlock which is useful for the cache coherence protocol domain and consistent with the internal definition of deadlock in the Murphi model checker: we refer to this deadlock as a system- wide deadlock (s-deadlock). In s-deadlock, the entire system gets blocked and is unable to make any transition. Cache coherence protocols consist of N symmetric cache agents, where N is an unbounded parameter; thus the verification of s-deadlock freedom is naturally a parameterized verification problem. Parametrized verification techniques work by using sound abstractions to reduce the unbounded model to a bounded model. Efficient abstractions which work well for industrial scale protocols typically bound the model by replacing the state of most of the agents by an abstract environment, while keeping just one or two agents as is. However, leveraging such efficient abstractions becomes a challenge for s-deadlock: a violation of s-deadlock is a state in which the transitions of all of the unbounded number of agents cannot occur and so a simple abstraction like the one above will not preserve this violation. In this work we address this challenge by presenting a technique which leverages high-level information about the protocols, in the form of message sequence dia- grams referred to as flows, for constructing invariants that are collectively stronger than s-deadlock. Efficient abstractions can be constructed to verify these invariants. We successfully verify the German and Flash protocols using our technique

    Formal Verification of a MESI-based Cache Implementation

    Get PDF
    Cache coherency is crucial to multi-core systems with a shared memory programming model. Coherency protocols have been formally verified at the architectural level with relative ease. However, several subtle issues creep into the hardware realization of cache in a multi-processor environment. The assumption, made in the abstract model, that state transitions are atomic, is invalid for the HDL implementation. Each transition is composed of many concurrent multi-core operations. As a result, even with a blocking bus, several transient states come into existence. Most modern processors optimize communication with a split-transaction bus, this results in further transient states and race conditions. Therefore, the design and verification of cache coherency is increasingly complex and challenging. Simulation techniques are insufficient to ensure memory consistency and the absence of deadlock, livelock, and starvation. At best, it is tediously complex and time consuming to reach confidence in functionality with simulation. Formal methods are ideally suited to identify the numerous race conditions and subtle failures. In this study, we perform formal property verification on the RTL of a multi-core level-1 cache design based on snooping MESI protocol. We demonstrate full-proof verification of the coherence module in JasperGold using complexity reduction techniques through parameterization. We verify that the assumptions needed to constrain inputs of the stand-alone cache coherence module are satisfied as valid assertions in the instantiation environment. We compare results obtained from formal property verification against a state-of-the-art UVM environment. We highlight the benefits of a synergistic collaboration between simulation and formal techniques. We present formal analysis as a generic toolkit with numerous usage models in the digital design process

    Predicate Abstraction with Indexed Predicates

    Full text link
    Predicate abstraction provides a powerful tool for verifying properties of infinite-state systems using a combination of a decision procedure for a subset of first-order logic and symbolic methods originally developed for finite-state model checking. We consider models containing first-order state variables, where the system state includes mutable functions and predicates. Such a model can describe systems containing arbitrarily large memories, buffers, and arrays of identical processes. We describe a form of predicate abstraction that constructs a formula over a set of universally quantified variables to describe invariant properties of the first-order state variables. We provide a formal justification of the soundness of our approach and describe how it has been used to verify several hardware and software designs, including a directory-based cache coherence protocol.Comment: 27 pages, 4 figures, 1 table, short version appeared in International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI'04), LNCS 2937, pages = 267--28

    Backward Reachability of Array-based Systems by SMT solving: Termination and Invariant Synthesis

    Full text link
    The safety of infinite state systems can be checked by a backward reachability procedure. For certain classes of systems, it is possible to prove the termination of the procedure and hence conclude the decidability of the safety problem. Although backward reachability is property-directed, it can unnecessarily explore (large) portions of the state space of a system which are not required to verify the safety property under consideration. To avoid this, invariants can be used to dramatically prune the search space. Indeed, the problem is to guess such appropriate invariants. In this paper, we present a fully declarative and symbolic approach to the mechanization of backward reachability of infinite state systems manipulating arrays by Satisfiability Modulo Theories solving. Theories are used to specify the topology and the data manipulated by the system. We identify sufficient conditions on the theories to ensure the termination of backward reachability and we show the completeness of a method for invariant synthesis (obtained as the dual of backward reachability), again, under suitable hypotheses on the theories. We also present a pragmatic approach to interleave invariant synthesis and backward reachability so that a fix-point for the set of backward reachable states is more easily obtained. Finally, we discuss heuristics that allow us to derive an implementation of the techniques in the model checker MCMT, showing remarkable speed-ups on a significant set of safety problems extracted from a variety of sources.Comment: Accepted for publication in Logical Methods in Computer Scienc

    Exploiting commutativity to reduce the cost of updates to shared data in cache-coherent systems

    Get PDF
    We present Coup, a technique to lower the cost of updates to shared data in cache-coherent systems. Coup exploits the insight that many update operations, such as additions and bitwise logical operations, are commutative: they produce the same final result regardless of the order they are performed in. Coup allows multiple private caches to simultaneously hold update-only permission to the same cache line. Caches with update-only permission can locally buffer and coalesce updates to the line, but cannot satisfy read requests. Upon a read request, Coup reduces the partial updates buffered in private caches to produce the final value. Coup integrates seamlessly into existing coherence protocols, requires inexpensive hardware, and does not affect the memory consistency model. We apply Coup to speed up single-word updates to shared data. On a simulated 128-core, 8-socket system, Coup accelerates state-of-the-art implementations of update-heavy algorithms by up to 2.4×.Center for Future Architectures ResearchNational Science Foundation (U.S.) (CAREER-1452994)Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Grier Presidential Fellowship)Microelectronics Advanced Research CorporationUnited States. Defense Advanced Research Projects Agenc
    • …
    corecore