
FORMAL VERIFICATION OF A MESI-BASED CACHE IMPLEMENTATION

A Thesis

by

VENKATESHWAR KOTTAPALLI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Aakash Tyagi
Committee Members, Duncan M. Walker

Jiang Hu
Head of Department, Dilma Da Silva

August 2017

Major Subject: Computer Engineering

Copyright 2017 Venkateshwar Kottapalli

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/147261219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Cache coherency is crucial to multi-core systems with a shared memory programming

model. Coherency protocols have been formally verified at the architectural level with

relative ease. However, several subtle issues creep into the hardware realization of cache

in a multi-processor environment. The assumption, made in the abstract model, that state

transitions are atomic, is invalid for the HDL implementation. Each transition is composed

of many concurrent multi-core operations. As a result, even with a blocking bus, several

transient states come into existence. Most modern processors optimize communication

with a split-transaction bus, this results in further transient states and race conditions.

Therefore, the design and verification of cache coherency is increasingly complex and

challenging.

Simulation techniques are insufficient to ensure memory consistency and the absence

of deadlock, livelock, and starvation. At best, it is tediously complex and time consuming

to reach confidence in functionality with simulation. Formal methods are ideally suited to

identify the numerous race conditions and subtle failures. In this study, we perform formal

property verification on the RTL of a multi-core level-1 cache design based on snooping

MESI protocol. We demonstrate full-proof verification of the coherence module in Jasper-

Gold using complexity reduction techniques through parameterization. We verify that the

assumptions needed to constrain inputs of the stand-alone cache coherence module are

satisfied as valid assertions in the instantiation environment. We compare results obtained

from formal property verification against a state-of-the-art UVM environment. We high-

light the benefits of a synergistic collaboration between simulation and formal techniques.

We present formal analysis as a generic toolkit with numerous usage models in the digital

design process.

ii

DEDICATION

To my parents, my sister, my extended family, and my friends.

iii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to Prof. Aakash Tyagi for his constant

support throughout the duration of my graduate study. His persistent optimism and en-

couragement, prodded me on, especially during periods of disbelief and doubt. This thesis

would be improbable without his guidance and help.

I am forever indebted to Prof. Flemming Andersen for providing direction and techni-

cal expertise. I am grateful for his friendly, jovial, and immensely supportive mentorship.

Prof. Andersen, through weekly interactions, has constantly inspired patience, dedication,

and clarity of thought in me. I am grateful to Prof. Michael Quinn for his support, super-

vision, and encouragement with the UVM simulation effort. I wish to thank Prof. Walker

and Prof. Hu for serving as members of my thesis committee, and providing valuable

feedback. Additionally, I am thankful to Prof. Sunil Khatri for rousing my creativity and

interest in research, while helping me identify my goals.

I am grateful to Surakshith M. Narasegowda, Abhinav Sethi and Sheena Goel, for

providing critical assistance at different stages of this project. Surakshith and Sheena

helped with the execution of dynamic verification, while Abhinav assisted with design

changes. I would also like to thank Yuhao Yang and previous designers of the legacy

cache implementation.

I wish to thank the ECE and CSE departments at TAMU for giving me an opportunity

to extend my skills and evolve. I am thankful to the CSE graduate advising office, Ms.

Karrie Bourquin in particular, for assistance with the logistic requirements. Lastly, I am

immensely grateful to my family and friends for their encouragement and belief in my

abilities.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Aakash Tyagi,

Professor Flemming Andersen, and Professor Duncan M. Walker of the Department of

Computer Science and Engineering (CSE), and Professor Jiang Hu of the Department of

Electrical and Computer Engineering (ECE).

The legacy RTL code and specification, used as a starting point for the thesis, was

provided by Prof. Aakash Tyagi, and Prof. Michael Quinn. Surakshith M. Narasegowda

assisted in implementation of the dynamic verification scenarios listed in Section 3.2. Ab-

hinav Sethi helped with the bug fix described in Section 5.2.2.3. Sheena Goel supported

the analysis of coverage, described in Section 5.1.2.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Graduate study was partly supported by a scholarship from the ECE department at

Texas A&M University.

v

NOMENCLATURE

HDL Hardware Description Language

RTL Register Transfer Level

UVM Universal Verification Methodology

UVC UVM Verification Component

FV Formal Verification

FPV Formal Property Verification

FEV Formal Equivalence Verification

MSI Modified, Shared, and Invalid Protocol

MESI Modified, Exclusive, Shared and Invalid Protocol

SV SystemVerilog

SVA SystemVerilog Assertions

FSM Finite State Machine

LLC Last-Level Cache

PLRU Pseudo-Least Recently Used

ABV Assertion-based Verification

DV Data Value invariant

SWMR Single-Write, Multiple-Read invariant

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . xi

LIST OF TABLES . xiii

1. INTRODUCTION . 1

1.1 Cache Coherence . 1
1.2 Coherence Protocols . 3

2. VERIFICATION OF CACHE COHERENCE 5

2.1 Need for Robust Verification . 5
2.2 Previous Work . 8
2.3 Approach . 10
2.4 Objectives . 12
2.5 Design Implementation . 13

3. SIMULATION-BASED VERIFICATION . 15

3.1 UVM Verification Environment . 17
3.2 Verification Scenarios . 22
3.3 Checkers . 27
3.4 Coverage Goals . 28

4. FORMAL VERIFICATION . 31

vii

4.1 Formal Property Verification . 33
4.1.1 Verification Plan . 36
4.1.2 Cover Statements . 38
4.1.3 Complexity Staging . 39
4.1.4 Assertions . 42
4.1.5 Complexity Reduction Techniques 43

4.1.5.1 Formal friendly properties 44
4.1.5.2 Auxiliary code . 46
4.1.5.3 Reference models . 46
4.1.5.4 Parameterization . 47
4.1.5.5 Free variables . 48
4.1.5.6 Memory abstraction 49

4.2 Formal Equivalence Verification . 50

5. RESULTS . 54

5.1 UVM Environment . 54
5.1.1 Bugs Discovered . 57

5.1.1.1 Signal cp_in_cache de-asserted during bus_rd_snoop . . 58
5.1.1.2 Signal cp_in_cache de-asserted during bus_rdx_snoop . 58
5.1.1.3 Signal shared_local not generated for modified snoop

block hit . 58
5.1.1.4 Incorrect LRU replacement 58
5.1.1.5 Incorrect instruction address bound 59
5.1.1.6 MESI state update during invalidate_snoop 59
5.1.1.7 LRU eviction does not invalidate cache line 59
5.1.1.8 Bus request dropped after LRU eviction 59
5.1.1.9 Response to snoop-side invalidate request 60
5.1.1.10 Discrepancy with reference model due to silent eviction 60
5.1.1.11 Incorrect update of LRU state variable 61
5.1.1.12 LRU state variable for shared to modified transition . . . 62
5.1.1.13 Contention between CPU and snoop-side requests . . . 63

5.1.2 Coverage . 63
5.2 Formal Methods . 65

5.2.1 Justification for Reduced Design Parameters 71
5.2.2 Bugs Discovered . 72

5.2.2.1 Absence of reset signal 72
5.2.2.2 Presence of in-out ports 72
5.2.2.3 Contention between CPU and snoop-side requests . . . 73
5.2.2.4 Deadlock situation . 76
5.2.2.5 Livelock situation . 78
5.2.2.6 Bus request without CPU operation 79
5.2.2.7 Signal cp_in_cache for incoming invalidate request . . . 80

viii

5.2.2.8 Invalidation acknowledgment during CPU first priority . 80
5.2.2.9 De-assertion of CPU first priority 80
5.2.2.10 Incorrect next-state logic in MESI FSM 81
5.2.2.11 LRU state implemented as latches 81
5.2.2.12 De-assertion of signal data_in_bus_cpu_lv1 81
5.2.2.13 De-assertion of signal cpu_wr_done 82
5.2.2.14 Multiple drivers for lv2_wr_done 82

5.2.3 Coverage . 82
5.2.4 Formal as Design Aid . 83

5.3 Comparison between Formal and Simulation 85
5.4 Collaboration between Formal and Simulation 89

5.4.1 Validating FPV Assumptions in Simulation 89
5.4.2 Bug-hunting FPV . 89
5.4.3 Improving Simulation Code Coverage 90
5.4.4 Additional Opportunities . 90

6. CONCLUSIONS . 91

6.1 Future Work . 94

REFERENCES . 96

APPENDIX A. SPECIFICATION . 102

A.1 Algorithm Description . 105
A.1.1 Replacement Policy . 105
A.1.2 MESI Protocol . 105

A.2 Design Hierarchy . 106
A.3 IO Interface . 108

A.3.1 Uni-core Cache Interface . 108
A.3.2 Multi-core Cache Interface . 109

A.4 Expected Behavior . 109
A.4.1 CPU Read . 110

A.4.1.1 Case 1: Read hit . 110
A.4.1.2 Case 2: Read miss . 110

A.4.2 CPU Write . 113
A.4.2.1 Case 1: Write hit . 113
A.4.2.2 Case 2: Write miss . 114

A.5 Timing Specification . 116
A.6 Multiplexer Specification . 117
A.7 Level-2 Cache . 119
A.8 Arbiter Specification . 121

ix

APPENDIX B. PROPERTIES . 122

B.1 Cover Points . 122
B.1.1 Uni-core Module . 122
B.1.2 Multi-core Module . 126

B.2 Assumptions . 126
B.2.1 Uni-core Module . 127

B.2.1.1 Complexity stage 1 . 130
B.2.1.2 Complexity stage 2 . 130
B.2.1.3 Complexity stage 3 . 131

B.2.2 Multi-core Module . 131
B.3 Assertions . 133

B.3.1 Uni-core Module . 133
B.3.1.1 CPU-lv1 interface . 134
B.3.1.2 System bus interface 134
B.3.1.3 Liveness properties . 135
B.3.1.4 MESI protocol . 136
B.3.1.5 Coherence and memory consistency 137
B.3.1.6 Bug fixes . 138

B.3.2 Multi-core Module . 139

x

LIST OF FIGURES

FIGURE Page

1.1 A typical shared memory system . 2

1.2 The architectural MESI state diagram 4

2.1 Simplified MESI state diagram with transition states 6

2.2 Verification approach . 11

2.3 System block diagram . 13

3.1 UVM verification environment . 16

3.2 Verification flow for a single CPU transaction 21

3.3 Coverage as an indication of verification completeness 29

4.1 Motivation for formal verification . 32

4.2 FPV tool execution . 35

4.3 Typical FEV execution . 52

5.1 Pass rate based on regression suite . 57

5.2 Silent eviction issue . 61

5.3 CPU write miss operation as a JG cover statement 65

5.4 FPV progress over time . 70

5.5 Example of contention issue . 73

5.6 JasperGold counter-example for contention issue 74

5.7 Example of deadlock . 77

5.8 Example of livelock . 79

5.9 Counter-example highlighting bus request without CPU operation 80

xi

A.1 Block diagram of the complete system 103

A.2 Relation between address, tag, index and offset 104

A.3 MESI coherence protocol . 106

A.4 Multi-core L1 cache design hierarchy 107

A.5 Read hit scenario . 117

A.6 Write hit scenario with shared block . 117

A.7 Snoop scenario for bus rd with copy in shared/exclusive 118

A.8 Snoop scenario for bus rd with copy in modified 118

A.9 Read serviced by level-2 cache . 120

A.10 Write back to level-2 cache . 120

A.11 Arbiter timing diagram . 121

xii

LIST OF TABLES

TABLE Page

3.1 Elements of CPU driver transaction . 19

3.2 Elements of CPU monitor packet . 20

3.3 Elements of SBUS packet . 20

3.4 Functions to be verified . 22

3.5 Test scenarios with description . 23

4.1 Formal verification plan . 37

5.1 Infrastructure for verification . 54

5.2 Time-line of verification progress . 55

5.3 Status of regression suite for original design parameters 56

5.4 Status of regression suite for reduced design parameters (RC) 56

5.5 Code coverage metrics without any exclusions 64

5.6 Assertion coverage metrics . 64

5.7 Functional coverage after analysis . 64

5.8 Property summary for uni-core FPV . 66

5.9 Assertion status for uni-core FPV . 67

5.10 Bounded proofs in uni-core FPV . 67

5.11 Property summary for multi-core FPV 69

5.12 Assertion status for multi-core FPV . 69

5.13 Bounded proofs in multi-core FPV . 70

5.14 Solution to concurrency issue: Priority when CPU request observed first . 75

xiii

5.15 Solution to concurrency issue: Priority when snoop request observed first 75

5.16 Coverage metrics for FPV . 82

5.17 Design size for our FPV . 83

5.18 Generic analysis of formal vs simulation 86

5.19 Comparison of results from formal vs simulation 88

A.1 Pseudo-LRU replacement policy . 105

A.2 Pseudo-LRU state update . 105

A.3 IO interface for uni-core cache . 108

A.4 IO interface for multi-core cache . 110

xiv

1. INTRODUCTION

Caches are vital components of modern processors. They dramatically improve system

performance by reducing the number of accesses to main memory. Most microprocessors

have several layers of cache to hide the increasing divide between processor and memory

performance. In the current era of multi-core systems, we are presented with two archi-

tectural choices: a shared memory model or a distributed model. The distributed model

dictates that each core has its own private memory. Different cores exchange informa-

tion using a message passing interface. The shared memory model, which assumes that

all cores access a common, single memory, is more popular of the two options. At any

instance of time, multiple cached copies could exist in a shared memory system. There-

fore, coherence and consistency are crucial in order to ensure correct functionality of such

a system. This chapter establishes formal definitions of coherence, consistency and the

MESI protocol.

1.1 Cache Coherence

A typical shared memory system is illustrated in Figure 1.1. Multiple agents are con-

nected through an interconnection network. An agent could be a processor, a direct mem-

ory access (DMA) block, or an external device that can write and read from memory. All

the agents can perform loads and stores to all physical addresses. Each agent has its own

private cache, and the last-level cache (LLC) is shared by all the cores.

Multiple copies of a data block can exist in the system. Intuitively, coherence implies

that all the agents see the same, correct value of the datum at a given time. This is essential

to ensure compliance with the shared memory model, and ease of debug. Additionally,

caches are architecturally invisible, dictating that programmers should not functionally

identify the presence or absence of caches.

1

Figure 1.1: A typical shared memory system

Numerous definitions of cache coherence can be found in published literature. But, a

coherent system would satisfy all the definitions, as they are equivalent. In this study, our

preferred definition of coherence is that offered by Hill et al. [2]. The following invariants

compose the formal definition1 of coherence [2].

1. Single-Writer, Multiple-Read (SWMR) Invariant: At a given logical time, a sin-

gle core can have read-write access or multiple cores can have read only access to a

given memory location.

2. Data-Value (DV) Invariant: The value of a given data block is the same as the last

write access.

Memory consistency, a related concept, is often confused with coherence. Consis-

tency specifies that "a system should appear to execute all threads’ loads and stores to all

memory locations in a total order that respects the program order of each thread" [2]. A

distinguishing feature between coherency and consistency is that coherency is defined on

1Invariants SWMR and DV are captured and proven as interface level assertions in our FPV effort

2

a per-memory location basis, while consistency is specified with respect to all memory

locations. Although, it is theoretically possible to have a consistent model with incoher-

ence [3], this topic remains an academic curiosity. Consistency is achieved through coher-

ence protocols. Therefore, cache protocols are vital to the correct design and functionality

of a modern processor.

1.2 Coherence Protocols

Coherence protocols enforce the two invariants necessary in a coherent system. Pro-

tocols are implemented as a finite state machine(FSM) in each of the storage structures

(cache and LLC). A distributed system of cache controllers communicate with each other

using transactions and messages to ensure coherence. The type and number of messages

and states depends on the particular cache coherence protocol.

In general, there are two classes of protocols, namely snooping-based and directory-

based [4]. Snooping-based mechanisms rely on broadcasting messages to all the agents.

Most commonly, cores observe the transactions over a shared bus interface and respond ac-

cordingly. Collectively, all the controllers ensure coherence. Within directory-based tech-

niques, a central directory holds the state of each data block. State contains information

about the current owner (read-write) or sharers (read-only). Requests are point-to-point

in directory based controllers. In this study, we consider a snooping-based protocol that

relies on a shared bus interconnect, as it is predominant in modern multi-core processors.

Additionally, cache controllers can be classified into invalidate and update protocols,

based on action performed in case of a CPU write. An invalidate protocol would request

other agents to invalidate their copy of the data block. An update protocol would rather

update all existing copies of the block within the system. We restrict our scope to the

MESI protocol, which is a popular invalidate technique.

MESI represents the four possible states of a cache block, namely modified, exclusive,

3

Figure 1.2: The architectural MESI state diagram

shared, and invalid. The architectural state diagram of the MESI protocol is illustrated in

Figure 1.2. A processor has read-write access to a block that is in modified or exclusive

state in its private cache. At a given time, any one of the agents alone can have a block in

modified or exclusive state. A block in shared state provides read-only access to the core.

Transitions to the left of states in Figure 1.2 represent processor side requests and the

subsequent controller action on the shared bus. More precisely, read and write are requests

from the core; bus rdx (read to modify), bus rd (read-only) and invalidate are requests

broadcast on the shared system bus. State transitions to the right on Figure 1.2, signify

incoming bus requests and corresponding responses. Collectively, all the cache controllers

work together, by adhering to the MESI state diagram, to realize a coherent system.

4

2. VERIFICATION OF CACHE COHERENCE

In this chapter, we motivate the need for full-proof verification of cache controllers.

We present previous work and distinguish it from this thesis in Section 2.2. Thereafter, we

describe our approach, objectives, and design implementation in Sections 2.3, 2.4, and 2.5

respectively.

2.1 Need for Robust Verification

The design and verification of cache controllers is notoriously complex [5]. Aside

from design and performance considerations, a cache implementation must consider the

coherence protocol as well as the communication fabric for functional robustness. The

coherence protocol is subject to several race conditions in a truly parallel system with

concurrent requests. The MESI protocol defined in Section 1.2 is an abstract model, it

simplifies numerous details which are of critical significance in the hardware realization.

Firstly, state transitions are assumed to be atomic in the architectural model. This

is impossible to achieve in implementation. The controller would arbitrate for shared

resources like the system bus, before performing a state transition. This non-atomicity

leads to the existence of transient states. A typical modern processor’s cache has about 4

stable states and around 10 transient states [6]. Transient states increase the complexity

and lead to additional race conditions. The presence of an atomic bus does not obviate the

need for transient states. Although a blocking bus would ensure that not more than one

transaction is outstanding on the system bus, state transitions could still be non-atomic.

Transient states necessary for a MESI-based controller with an atomic bus is depicted in

Figure 2.1 [7]. Transitions due to incoming system bus requests are hidden in Figure

2.1 for simplicity. Race conditions arise when conflicting requests are observed on the

processor side and the system bus side. The large number of states and race conditions

5

Figure 2.1: Simplified MESI state diagram with transition states

make verification and design extremely challenging.

Second, several performance optimizations are introduced in modern designs. The

most prominent example is a split transaction bus. A blocking bus is inefficient from

a performance viewpoint. Therefore, modern processors allow multiple outstanding re-

quests on the shared system bus. This would require buffers within the cache controller

in order to track outstanding requests. Responses to the system bus requests could arrive

out of order. As a result, the design complexity increases tremendously. Recent improve-

ments like write-back buffers, complex interconnection networks, hardware transactional

memory, and hierarchical caches further contribute to the design complexity.

Additionally, the communication fabric of the controller is prone to deadlock, live-

lock and starvation. Therefore, we must also verify the communication infrastructure for

6

correctness, liveness, and fairness.

Simulation-based techniques alone are insufficient in the verification of caches. They

often fail to identify race conditions and critical failures in corner case scenarios. It is

challenging to reach confidence in coherence using simulation due to concurrency, and

the large number of states and transitions in a cache controller. Vantrease et al. assert

that a total of 60 state transitions exist in the simple MSI protocol, when we consider race

conditions [6]. Simulation suffers from the lack of controllability, and tedious debug. Sim-

ulation does not provide sufficient fine-grained control to exercise interesting corner cases,

mainly due to the rigid nature of test-bench components. Certain legal behavior could be

prevented by inherent assumptions made within testbench components. We depend on

pseudo-random stimulus to fortuitously exercise and identify failing scenarios. The large

number of states and transitions makes it improbable to identify all failing corner cases

in simulation, leading to critical bug escapes. Even in cases when failures are exercised,

debug is tedious and time-consuming due to large traces in which the failure is identified

several thousand cycles after the source of error. Coherence design flaws have escaped

into shipping products in the past. A popular example is the Intel core2duo coherence

bug, "A139: Cache data access request from one core hitting a modified line in the L1

data cache of the other core may cause unpredictable system behavior." [8]. In order to

prevent future bug escapes, design teams must ensure robust verification of the complex

cache controller.

Formal verification with clever abstraction techniques is often cited as the ideal method

for cache verification. There are few documented examples of a verified cache coherence

protocol in SystemVerilog or other hardware description languages [5]. Abstract models

of protocols have been formally verified in the past with relative ease. However, there is a

significant semantic gap between the architectural model and hardware realization. There-

fore, we apply formal property verification to guarantee coherence of our MESI-cache

7

RTL implementation. This was primarily enabled by parameterizing the implementation

to solve the complexity problem that would otherwise prevent full-proof verification of the

RTL model.

2.2 Previous Work

The design and verification of cache has remained an active research focus for over

three decades [9]. Numerous advancements have been proposed with emphasis on either

performance or security. Specifically within the purview of cache coherence, several tech-

niques have been explored to make the verification problem more tractable. In this section,

we summarize efforts aimed at solving the verification challenge of coherence protocols.

Clarke et al. pioneered the use of formal verification for coherence with the Future-

bus+ protocol in 1993 [10]. Thereafter, coherence protocols are typically verified using

formal techniques only at the architecture level [11, 12, 13, 14, 15] with tools like Murphi

and TLA+. Complexity and the lack of formal tool support for SystemVerilog prohibited

effective application of formal methods to the register-transfer-level (RTL) description. At

the abstract level, subtle implementation details like timing are excluded to reduce com-

plexity, which in turn facilitates formal techniques. However, there is significant semantic

gap between the abstract model and HDL implementation. It is often more challenging

to verify coherence of the HDL implementation of a formally verified abstract protocol

rather than verifying the architectural model [5]. Once the higher level abstract model is

formally verified, equivalence verification is attempted between the RTL implementation

and the abstract model. Pong et al. used formal techniques to verify the protocol, but de-

pended on random simulations to verify the implementation [11]. Standard practice is to

use simulation for RTL verification of cache controllers. Refinement checkers are devel-

oped from the high-level model for use in simulation-based verification of RTL [15]. There

are few published examples of formally verified cache hardware descriptions [5]. Dave et

8

al. suggest the use of high-level synthesis to tackle the verification problem [5]. They

demonstrate that automatic synthesis of high-performance, realistic coherence protocols

is feasible using Bluespec SystemVerilog (BSV), a guarded atomic hardware description

language. Formal verification is performed on a modular, parameterized description in

BSV. However, this technique has not been adopted in the industry due to limitations of

high-level synthesis.

Recent developments in formal tools, increasing computation power, and main mem-

ory size permit a thorough reinvestigation of the applicability of formal techniques. There-

fore, we focus on applying clever complexity reduction techniques and standard formal

property verification to a parameterized MESI cache RTL design using JasperGold, a

model checking tool from Cadence.

In our approach, parameterization enables formal property verification on a reduced

configuration of the cache design. Parameterization has previously been used in several

studies to simplify the complexity problem and to verify coherence protocols at the ab-

stract level [14, 16, 17]. Safety and liveness properties of several complex cache protocols

including split transaction versions have been proven in languages like Murphi. Our ap-

proach is unique in the manner that we perform parameterized verification at the RTL

level in SystemVerilog, unlike earlier studies which focus on the guarded atomic model.

To the best of our knowledge, this is the first study to formally verify MESI-based cache

coherence at the RTL level using parameterization.

Alternatively, several efforts have aimed to reduce the complexity and simplify cache

coherence. A notable example is atomic coherence by Vantrease et al. [6], which proposes

the use of optical mutual exclusion to avoid race conditions completely. Verification is

simplified by serializing conflicting coherence requests to the same address. Another ex-

ample is fractal coherence, which provides a design for verification technique of massively

multi-core systems, amenable to formal tools. The DeNovo cache coherence protocol pro-

9

posed by Komuravelli and Adve [18, 19], places limitations on the allowed parallelism to

simplify transient states and non-determinism. Our project is independent of the above

techniques. Therefore, our findings can be used to augment and assist validation of the

above methods.

Runtime or dynamic verification in actual hardware is also proposed as a means to

tackle the complex cache verification problem. Cantin et al. demonstrated the use of addi-

tional hardware to detect design errors in addition to manufacturing defects [20]. DeOrio

et al. proposed CoSma, a novel technology to provide post-silicon validation of cache

coherence protocols in multi-core systems [21]. The drawbacks of post-silicon validation

is not limited to hardware and performance overhead alone. Diagnosis of functional errors

is challenging due to the limited internal node observability in prototype hardware [22].

Although testing in hardware is orders of magnitude faster than simulation and formal ver-

ification, postponing detection of functional errors to post-silicon is restricted by the cost

of fabrication.

In 2011, a collaborative initiative between JasperGold and ARM resulted in the for-

mal verification of the ARM AMBA ACE cache coherence [23]. They initially performed

abstract protocol verification, and subsequently completed full-proof verification of the

HDL implementation. Our study has several similarities to the published version of this

effort in many aspects. However, intricate details about the properties and techniques em-

ployed by the industry collaboration remain confidential. Therefore, this work contributes

by highlighting the properties and methods necessary to prove coherence at the RTL level.

2.3 Approach

The primary objective is to develop a cache controller that adheres to the specification,

coherence and a valid communication infrastructure. The interconnect is required to be

free of deadlock, livelock and starvation. Additionally, it should obey the dictated input-

10

Figure 2.2: Verification approach

output protocol. In this study, we begin with a simple legacy implementation which has

been minimally verified with basic test scenarios, similar to how designers in the industry

perform a sanity check before release to the verification team. Therefore, the legacy RTL

is free from trivial design failures. As illustrated in Figure 2.2, we simultaneously apply

simulation and formal techniques to enhance the design as and when we identify bugs.

Bugs are essentially deviations from the defined specification. If necessary, we update the

specification in case of an architectural flaw. The goal is to complete full-proof verification

while eliminating complex corner case bugs and failures.

We offer an effective comparison between simulation and formal methods for the pur-

11

pose of cache verification at the HDL level. We develop a state-of-the-art, simulation-

based environment for this purpose, based on the principles of random, coverage driven

verification. Details of the Universal Verification Methodology (UVM) test-bench, a sim-

ulation standard predominantly used in the industry, are provided in Chapter 3. The formal

verification effort is described in Chapter 4. We apply property verification, with clever ab-

straction techniques and a sound complexity staging plan, to our design. Parameterization

of the design is performed to make formal analysis feasible. Equivalence checking, as re-

ported in Section 4.2 is used to ensure correctness and functionality post-parameterization.

We comment about the return-on-investment of engineering effort in simulation, and

formal analysis. Evaluation criteria for the comparison includes, but is not limited to,

critical failures identified, ease of debug, length of failing traces, time to develop the envi-

ronment, and proof of forward progress. Through the effort, we hope to identify methods

suited for a symbiotic relationship between the two techniques. We also wish to summa-

rize the design principles required to enable formal analysis of large, complex designs.

2.4 Objectives

The main objectives of this study are outlined below:

• Define properties necessary to guarantee coherence, and correctness of the commu-

nication infrastructure

• Identify techniques to achieve a synergistic collaboration between simulation and

formal

• Provide a foundation for formal verification of complex, performance-aggressive

cache designs

• Highlight design principles necessary to enable large scale formal verification

12

• Develop an effective comparison between simulation and formal methods for coher-

ence verification at the RTL level

2.5 Design Implementation

The cache implementation under consideration is snooping-based with a shared system

bus and uses the MESI coherence protocol. We perform robust verification to transform a

readily available, toy design into a synthesizable, bug-free, product-ready design. A block

diagram of the envisioned system is presented as Figure 2.3. We strive to develop a robust

Register Transfer Level (RTL) description of the level-1 cache and system bus module.

For simulation purposes, we use behavioral models of the cores, arbiter, level-2 cache,

and memory block. The design is heavily parameterized with numerous options available

including number of cores, address width, data width, cache line size, and cache size.

Figure 2.3: System block diagram

Each CPU core is assigned a private level-1 (L1) cache, while all cores share the level-

13

2 (L2) unified cache. Address space is partitioned into separate instruction and data space.

L1 cache is separated into data and instruction cache, but level-2 cache is unified and

serves the entire address range. Coherence is maintained through messages on the shared

system bus, in adherence to the MESI cache protocol. An arbiter provides exclusive grant

of the system bus in a round-robin fashion to ensure fairness. The system bus is atomic;

therefore, at any point in time, a maximum of one outstanding request can be pending

on the bus. Caches are inclusive, and conform to write-back and write-allocate mecha-

nisms. Additionally, the design policy operates in accordance with a pseudo-LRU (least

recently used) cache replacement algorithm. The detailed design specification is included

in Appendix A.

14

3. SIMULATION-BASED VERIFICATION

Simulation is the primary verification technique for integrated circuit design, widely

used in the industry for over three decades now [24, 25]. Input stimulus is fed to the

design-under-verification (DUV) continuously throughout the duration of the test. Ob-

served outputs are compared with the expected outputs, usually generated by an indepen-

dent reference model. Considerable amount of infrastructure is required to be developed

before any verification can be performed. Common components include stimulus gener-

ators, output monitors, checkers, coverage models, and scoreboards. Stimulus generators

determine inputs to the DUV at every instance (clock cycle). Output monitors capture

the observed outputs into high-level transactions, which are eventually forwarded to the

scoreboard. Checkers are embedded within the monitors and scoreboards to detect forbid-

den behavior or specific failures. Coverage monitors are required to ensure that the entire

range of functionality has been verified. Scoreboards generally house high-level check-

ers and reference models. Most verification components are interdependent. Therefore,

substantial time and effort is required even before basic, typical behavior can be verified.

Over the years, substantial improvements in methodology have resulted in increased

efficiency and shorter verification cycles. The key technologies responsible are pseudo-

random stimulus, intellectual property (IP) based design [26], metric-driven approach,

assertion-based verification [27], and standardized methodologies. Improvements are pri-

marily focused on enhancing re-use, predictability, ease of use, and automation. Though

often incomplete, pseudo-random stimulus is effective in detecting corner cases and cov-

ering a wide range of behavior in a single test scenario. Assertions are critical to detect

flaws early in the design cycle. They pin-point to the actual source of the failure, unlike

high-level checkers, which usually detect failures late and fail to indicate the source. Lay-

15

ered stimulus is essential for easy debug and understanding. Standard, open methodologies

like OVM, VMM and UVM provide crucial interoperability between tools, companies and

vendors. We use present-day industry standard techniques throughout the project to get an

accurate comparison between formal and simulation, with respect to cache verification.

In this chapter, we describe the simulation-based verification effort in detail. We de-

velop a state-of-the-art Universal Verification Methodology (UVM) test-bench (TB) built

on SystemVerilog (SV). Proven standard industry practices like coverage (metric) driven

closure, pseudo-random stimulus, and embedded assertions are rigorously enforced and

followed [24, 28, 29].

Figure 3.1: UVM verification environment

16

3.1 UVM Verification Environment

UVM is the industry standard technique used for functional hardware verification [24,

29, 30]. We develop a complete UVM verification environment with pseudo-random stim-

ulus and a metric-driven approach to verify our cache design. A key component of this

environment is the transaction-accurate reference model which is used as the golden ver-

sion. Figure 3.1 represents the overall structure of the test-bench. UVM components

developed include CPU agent, virtual sequencer, test cases, scoreboard and the system bus

monitor. Behavioral models are used to describe the level-2 cache, memory, and arbiter.

The RTL blocks and behavioral models are borrowed from a previous project, while UVM

components are devised from scratch. It is important to note that the design (RTL) was par-

tially verified using a testbench-based verification environment in an earlier project with

directed testing. This was similar to a minimalistic test-bench typically used by designers

to verify basic functionality. Therefore, trivial bugs have been weeded out of the design

well in advance. Behavioral models are assumed to be error-free. Hence, the main focus

of verification is the multi-core level-1 cache.

The UVM verification components (UVCs) used in the environment are described be-

low.

• CPU Agent:

The CPU agent extends from the ’uvm_agent’ base class. It consists of a monitor,

a driver, and a sequencer. It mimics the role of a CPU core connected to the level-1

cache in the final SoC design. Sub-components and their functions are listed below:

Driver: extends from ’uvm_driver’ base class. It has access to the CPU-Lv1 inter-

face, through which it interacts with the DUV. It drives signals on the interface

based on transactions received from the sequencer. It connects to the sequencer

through a handshake mechanism inbuilt in UVM.

17

Sequencer: extends from ’uvm_sequencer’ base class. It receives transactions from

the virtual sequencer and forwards it to the driver. It behaves in a sequential

manner. Therefore, a maximum of one transaction is driven at any given point

of time.

Monitor: extends from ’uvm_monitor’ base class. It also has access to the CPU-

Lv1 interface, but it can only passively observe the signals. It does not have the

capability to affect any of the interface signals. It packages observed behavior

into meaningful CPU monitor packets, which are passed onto the scoreboard

for high-level checks. Simple interface level checks are implemented as asser-

tions in the monitor. Coverage collectors are also realized in this component.

• System Bus Monitor:

The system bus monitor (SBUS) is a passive component extending from base class

’uvm_monitor’. It observes signals on the system bus interface to create an SBUS

packet. This packet is sent to the scoreboard for comparison with the expected SBUS

packet. SBUS contains checkers for the DUV outputs on the system bus interface.

Collectors are present to monitor coverage on bus activity.

• Scoreboard:

The scoreboard, which extends from ’uvm_scoreboard’, houses the cache reference

model and high level checkers. It is mainly responsible for ensuring transaction

accuracy of the DUV outputs. Two broad classes of DUV outputs are the data re-

turned to the CPU agent, and system bus activity necessary for coherence. The cache

reference model mimics the complete functionality of the DUV. Behavioral model-

ing combined with associative arrays facilitate an efficient implementation in Sys-

temVerilog. The reference model is similar to a guarded atomic model. It assumes

that transactions are atomic, which is not always true in the RTL implementation.

18

It provides the expected data and system bus activity for comparison with observed

output packets.

• Virtual Sequencer:

This component is crucial to have fine-grained control of the transactions on each

of the CPU agents. It is also referred to as multi-channel sequencer. We define

temporal relations between operations on agents through the virtual sequencer. For

instance, we can define parallel transactions on each of the CPU agents. It receives

a sequence from the test class and forwards transactions to the agents as specified in

the virtual sequence.

UVM data items enable communication between the various verification infrastructure

components. Three types of transactions are used, namely CPU driver transaction, CPU

monitor packet, and SBUS packet. CPU driver transaction is created in the test class and is

consumed by the CPU driver. CPU monitor packet, as is obvious from the name, is born in

the CPU monitor and consumed by the scoreboard. Similarly, SBUS packet is transferred

from SBUS to the scoreboard. Member elements and their corresponding descriptions are

presented in Tables 3.1, 3.2, and 3.3.

Table 3.1: Elements of CPU driver transaction

Member Description
Request type Read or write request
Data Write data for a write request
Address Address to be accessed
Cache type Instruction or data cache access
Wait cycles Number of clock cycles to wait before driving the transaction

19

Table 3.2: Elements of CPU monitor packet

Member Description
Request type Read or write request
Data Data from cache for read or CPU for write
Address Address to be accessed
Cache type Instruction or data cache access
Service time Number of clock cycles for the entire transaction
Illegal Flag to indicate if transaction is invalid i.e. write to I-cache

Table 3.3: Elements of SBUS packet

Member Description
Bus request type BusRD or BusRDX or Invalidate or IcacheRD
Cache number ID of the primary cache which obtained bus access
Address Primary address of the bus request
Read data Data returned to the primary bus request
Request serviced by ID of the cache which serviced the primary bus request
Copy in cache Flag to indicate if ’cp_in_cache’ was asserted
Shared Flag to indicate if ’shared’ signal was high
Snoop requests ID of all the caches which requested snoop access
Snoop write back Flag to indicate if snoop cache performed write-back
Write data snoop Data of the snoop write-back
Dirty evict flag Indication if the primary cache evicted a dirty block
Dirty evict address Address of the evicted cache line
Dirty evict data Data of the eviction
Service time Total number of clock cycles taken by the bus transaction

The verification flow for a single CPU operation in this test-bench is depicted in Fig-

ure 3.2. The CPU transaction is first received by the driver, which stimulates the DUV

input interface accordingly. If the operation requires a system bus message, DUV would

request for bus access and initiate the creation of a SBUS packet. Once the bus request

is complete, the system bus monitor forwards the packet to the scoreboard. Depending

on the primary cache ID, scoreboard pushes the packet into an appropriate queue. Next,

20

DUV can respond to the CPU agent with the required data(read request) or ’acknowledge’

signal (write request), completing the CPU operation. As soon as the transaction is com-

pleted, the CPU monitor transmits the monitor packet to the scoreboard. Scoreboard feeds

the CPU packet to the reference model, which in turn provides the ideal data and system

bus activity. Finally, expected SBUS packet is compared with the observed bus activity by

popping an SBUS packet from the appropriate queue.

Figure 3.2: Verification flow for a single CPU transaction

A key feature of the verification environment, like the RTL design, is that it is highly

parameterized. We can easily configure features like address width, data width, cache size,

21

length of a cache block, and number of cores. Parameters can be adjusted with no changes

to the test-bench infrastructure. Principles of modularity, re-use, and interoperability are

followed rigorously by adhering to UVM guidelines.

3.2 Verification Scenarios

A prudent verification plan is crucial for success in the first attempt. In the previous

section, we discussed the test-bench infrastructure and verification flow. In this section,

we describe critical features, verification methods and specific test cases identified during

the planning stage.

Table 3.4: Functions to be verified

Function Description
Basic connectivity Ensure that the input-output interface is functional.
IO protocol adherence Design should adhere to the input-output protocol as specified
Read to I-cache Read operation to the instruction cache
Write to I-cache Write operation to instruction cache should be ignored
Read to D-cache Data cache must supply appropriate data to the CPU
Write to D-cache Data should be written to the correct address
PLRU I-cache Pseudo LRU replacement policy must be followed by the in-

struction cache
PLRU D-cache Pseudo LRU replacement policy must be accurate in the data

cache operation
MESI protocol Cache should respond/send messages on the system bus as ne-

cessitated by the MESI protocol (data cache only)

Detailed design specification, provided in Appendix A, is treated as the golden refer-

ence. The level-1 multi-core cache design is the main focus of our verification effort. We

assume that the level-2 cache (LLC), the arbiter and memory are bug-free behavioral de-

scriptions. As mentioned earlier, both the design and verification environment are param-

eterized for a flexible number of cores. We concentrate on a 4-core RTL block comprising

22

of four uni-core cache instantiations. We do not sub-divide the process into different lev-

els of verification. We verify the complete RTL block as one single entity. However,

particular test cases would focus only on the functionality of a uni-core cache. We adopt a

Grey-box approach in this endeavor, by tapping into few signals internal to the multi-core

block. Stimulus is pseudo-random, as scenarios are predominantly pseudo-random with a

few directed test cases.

Features identified as crucial for verification are listed in Table 3.4. One or more

features are verified in each of the test scenarios described in Table 3.5. Amongst the

features, MESI operation is most challenging to verify and debug, due to the sheer number

of possibilities. A total of 22 test scenarios were planned and executed. The primary cache

and the snooping caches involved were randomized for every test.

Table 3.5: Test scenarios with description

No. Scenario Description
1 Read miss I-cache - Initiate a read request to a block not present in the

instruction cache
2 Read hit I-cache - Initiate a read request to an instruction block

- Wait for the data to arrive in cache
- Initiate a read request to the same block

3 Write miss I-cache - Initiate a write request to a block not present in the
instruction cache

4 Write hit I-cache - Initiate a read request to an instruction block
- Wait for the data to arrive in cache
- Initiate a write request to the same block

5 Read miss D-cache
serviced by L2

- Initiate a read request to a block not present in the data
cache of any processor

23

Table 3.5: Continued

No. Scenario Description
6 Read miss D-cache

serviced by another
core’s cache

- Read request to a block on the secondary CPU-1
Case 1: Snoop cache is in M
* Write request to block on secondary CPU-1
Case 2: Snoop cache is in E
* Do nothing
Case 3: Snoop cache is in S
* Read request to block on secondary CPU-2
- Read request on primary CPU to the same block

7 Read hit D-cache -Read request to a data block on primary CPU
Case 1: Primary cache is in M
* Write request to this block on primary CPU
Case 2: Primary cache is in E
* Do nothing; block already in E state
Case 3: Primary cache is in S
* Read request to this block on secondary CPU
- Read request on primary Proc to the same block

8 Write miss D-cache - Select a case randomly
Case 1: Secondary CPU cache is in I
* Do nothing
Case 2: Secondary CPU cache is in M
* Write request to the block on secondary CPU
Case 3: Secondary CPU cache is in E
* Read request to the block on secondary CPU
Case 4: Secondary CPU cache is in S
* Read request on primary and secondary CPUs
* Evict the block from primary cache
- Write request to block on the primary CPU

9 Write hit D-cache - Select a case randomly
Case 1: primary CPU cache is in M
* Write request to the data block
Case 2: primary CPU cache is in S
* Read request on both primary and secondary CPU
Case 3: primary CPU cache is in E
* Read request to the data block
- Write request on primary CPU to the same block.

10 LRU read I-cache - Initiate read requests R1-R8 to 8 instruction blocks of
the same set index, ensure that at least 5 of these blocks
are unique

24

Table 3.5: Continued

No. Scenario Description
11 LRU read D-cache - Initiate read requests R1-R8 to 8 data blocks of the

same set index, ensure that at least 5 of these blocks are
unique

12 LRU write D-cache - Initiate read/write operations A1-A8 to 8 data blocks
of the same set index, ensure that at least 5 of these
blocks are unique and that the last 4 accesses are write
operations

13 Snoop BusRd request - Randomly select a case
Case 1: Primary CPU cache is in I
* Do nothing
Case 2: Primary CPU cache is in E
* Read request to the block of interest on primary
Case 3: Primary CPU cache is in M
* Write request to the block of interest on primary
Case 4: Primary CPU cache is in S
* Read request to the block on secondary CPU
* Read request to the block on primary CPU
* Evict the block of interest on secondary CPU
- Read request on the secondary CPU for the block
- Confirm the state transition in primary cache

14 Snoop BusRdx re-
quest

- Randomly select a case
Case 1: Primary CPU cache is in I
* Do nothing
Case 2: Primary CPU cache is in E
* Read request to the block of interest on primary
Case 3: Primary CPU cache is in M
* Write request to the block of interest on primary
Case 4: Primary CPU cache is in S
* Read request to the block on secondary CPU
* Read request to the block on primary CPU
* Evict the block of interest on secondary CPU
- Write request on the secondary CPU for the block
- Confirm the state transition in primary cache

25

Table 3.5: Continued

No. Scenario Description
15 Snoop Invalidate re-

quest
- Read request to block on the secondary CPU
- Read request to block on the primary CPU
- Randomly select a case
Case 1: Primary CPU cache does not have the block
* Evict the block from primary cache
Case 2: Primary CPU cache is in S
* Do nothing; already in S
- Write request on the secondary CPU
- Confirm the state transition in primary cache

16 Simultaneous read - Read request on all CPUs for the same address con-
currently

17 Simultaneous write - Write request on all CPUs for the same address con-
currently

18 Round robin write Generate following sequence to same data block:
- Read 0, Read 1, Read 2, Read 3
- Write 0, Read 1, Write 2, Read 3
- Write 1, Read 0, Write 3, Read 2
- Write 0, Write 1, Write 2, Write 3
- Read 0, Read 1, Read 2, Read 3

19 Random single set - 100 random requests to the same set on all CPUs
- Randomize between read and write requests

20 Random test - 100 random requests on all CPUs
- Randomize between read and write requests
- Restrict access to two random sets

21 Random delay test - 100 random requests on all CPUs
- Randomize between read and write requests
- Restrict access to two random sets
- Randomize delay between requests

22 Random six address - 100 random requests on all CPUs
- Randomize between read and write requests
- Restrict access to 6 addresses within the same set
- Randomize delay between requests

26

3.3 Checkers

Two broad classes of checkers are employed in this project, namely SystemVerilog

assertions (SVA) and transaction-level checks. In general, assertions could either be im-

mediate or concurrent [27]. Since concurrent SVA is suitable for both static and dynamic

verification [27], we commit to concurrent assertions for communication protocol checks.

The input-output interface verification depends on accurate properties. These assertions

are housed within the CPU monitor, system bus monitor, and interface files. The most

significant advantage of assertions is that failures are close to the source of error. It is easy

to narrow-down the root cause of the bug. However, a disadvantage of SVA is that scope

and expressiveness are limited. Therefore, it is challenging to define high-level checks as

assertions without additional SV code.

The simulation effort in our project preceded the formal endeavor. As a result, asser-

tions used in initial stages of simulation are used as the starting point for formal property

verification (FPV) described in Chapter 4. Nonetheless, several assertions and assump-

tions were defined on-the-fly during the FPV process. These additional properties were

added to the simulation effort gradually. All the assertions used in simulation are indi-

cated in Appendix B. It is important to note that while properties assist in simulation

debug, they can significantly increase the run-time of test-cases.

High-level checkers, included in the scoreboard, verify transaction level accuracy in

comparison with the cache reference model. DUV outputs can be categorized into 1)

data returned to the CPU and 2) messages relayed on the system bus for coherence. We

incorporate two checkers, one for each class of DUV outputs. The typical flow for score-

boarding is indicated in Figure 3.2. High-level checks are triggered by the arrival of a

CPU monitor packet in the scoreboard. Expected data is compared with the observed data

in the CPU packet for a read operation. Expected system bus activity is compared with

27

the observed SBUS packet. High-level checks engulf a major portion of the functionality.

They are capable of verifying a wide range of behavior. However, high-level symptoms

are observed several thousand cycles after the root cause of the failure. As a result, it is

challenging to debug with merely transaction-level checking.

In summary, we verify our implementation with the below mentioned checkers:

SystemVerilog assertions: Concurrent assertions capture essential properties of the com-

munication protocol interface.

Data integrity check: Data is compared in the scoreboard against the reference model.

System bus activity check: Messages on the common shared bus are crucial for coher-

ence. Activity on the bus is compared against the expected transactions determined

by the reference model.

3.4 Coverage Goals

Verification completeness is accessed by a combination of factors like coverage, bug

discovery rate, and test-case pass percentage. Verification closure also depends on sev-

eral business parameters like time-to-market, IC application, risk involved, cost of re-spin,

etc. Generally, it is easy to identify additional subtle design discrepancies with extra ef-

fort and time. Therefore, it is crucial that the owner/manager decides the right trade-off

point between engineering effort and return-on-investment (ROI). Coverage is the most

crucial indicator of verification progress [24, 25, 29]. We must define coverage goals dur-

ing the planning stage, to prevent critical design failures in silicon. However, occasional

compromises are made with thorough discussions between all parties involved.

The fundamental principle of a metric-driven approach is to monitor well defined met-

rics like coverage, pass percentage and bug rate through the verification process. Coverage

is broadly classified into code coverage, and functional coverage. The tool implicitly cap-

28

tures code coverage information from the regression results and RTL. Functional coverage,

on the other hand, is explicitly defined by the verification team.

Figure 3.3: Coverage as an indication of verification completeness

Figure 3.3 illustrates progress as a function of code and functional coverage. If both

coverage metrics are low, the project is mostly in the early stages with several weeks of

work remaining. A high functional coverage coupled with low code coverage indicates the

possibility of either dead RTL code and/or poor functional coverage definition. Significant

portion of the RTL can be rendered irrelevant if a particular feature is disabled in a legacy

IP. In such a scenario, the team must take steps to waive dead code and improve coverage

definition. A situation with low functional, but high code coverage indicates that stimulus

and behavior is limited. Another possibility is that the design is incomplete. If efforts

do not yield any improvement in metrics, it would be wise to try formal tools to elimi-

nate unreachable coverage. The ideal case is one with high code and sufficient functional

29

coverage. In such a case, the team can call verification closure in consultation with other

metrics like bug rate and test-case pass proportion.

In this work, we strive to achieve code and functional coverage beyond 99% with suit-

able waivers. We define elaborate coverage collectors within the CPU monitor and SBUS

UVC to capture the entire gamut of possible legal behaviors. Code coverage incorporates

line, block, expression, FSM and toggle coverage.

30

4. FORMAL VERIFICATION

The class of formal methods encompasses several mathematical techniques which for-

mally analyze the state space of a design [1]. A stark difference from simulation is that

specific input stimulus is not supplied to the design under verification (DUV). In simu-

lation, the test-bench continuously drives active values to the DUV, while monitoring the

outputs. Therefore, a given execution can merely verify the design for that specific input

combination. However, formal techniques ideally verify the design for all possible legal

input values subject to assumptions, which constrain the inputs to legal behavior, and ini-

tialization, which is required to determine the legal reset states. This point is illustrated in

Figure 4.1. Consider the circle to represent the legal state space of the DUV, simulation

can merely provide spot coverage. State of the DUV is comprised of all state elements

(flip-flops and latches), and inputs. Each simulation scenario when executed covers a sin-

gle point on the design’s state space. Formal analysis ideally promises full coverage of

the entire problem space, but in reality due to capacity limitations, it is often only possible

to validate critical subsets of the entire state space. This can be achieved by performing

bounded model checking, abstraction, or other complexity reduction means. In this chap-

ter, we briefly describe popular formal techniques, and their typical usage models. Then

we proceed to explain our approach to formally verify the MESI cache design.

Broadly, formal methods can be categorized into three classes, namely:

Formal Property Verification (FPV): The use of formal tools to prove assertions iden-

tified from the specification. This technique, based on state space enumeration, is

also known as model checking.

Formal Equivalence Verification (FEV): This technique is used to compare two mod-

els and determine their equivalence. A standard requirement in the digital design

31

Figure 4.1: Motivation for formal verification

industry is to prove equivalence between the netlist and RTL or two different netlist

versions.

Theorem Proving: This technique uses a set of specified, required properties (assertions)

about a design to verify that these properties are satisfied by the implementation. A

difference from model checking is that universal and existential qualification can be

used to verify properties for any size of the design. Techniques used are also distinct;

theorem provers use logic deduction, rewriting techniques and decision procedures

to prove that the properties always hold true. Once these properties are verified, they

become theorems about the implementation.

Model checking and formal equivalence verification are most relevant to the realm of

hardware verification. Theorem proving techniques are sparingly used in digital design.

In this work, we primarily focus on formal property verification of a MESI cache con-

troller using model checking techniques. We begin with an initial specification and a toy

RTL implementation of the multi-core cache, which is hereby referred to as initial design.

We perform full proof FPV of the snooping cache design implemented in SystemVerilog

32

using efficient complexity reduction techniques. The initial design has several limitations

like lack of parameterization, absence of a reset signal, and the presence of in-out ports.

We overcome these limitations and other design flaws during the verification process to

produce a robust design. Parameterization is critical to enable re-use, and modularity. Ad-

ditionally, it facilitates structural abstraction, thereby permitting formal analysis of large,

complex designs like a cache controller. In this chapter, we describe in detail the process

and techniques used to make formal property verification of our RTL design feasible.

Formal equivalence checking is widely adopted during the synthesis of digital circuits.

A downside of FEV is that it requires a reference model which we trust is correct and

portrays the exact same behavior as the implementation (DUV). It is commonplace to

witness FEV of an RTL model and a synthesized netlist. In this study, we adopt FEV

to verify parameterization of our cache design. We demonstrate the use of equivalence

checking as a useful tool during the front-end design phase. This effort is described in

Section 4.2. Due to time limitations, we were unable to explore the uses and implications

of theorem proving. Therefore, we include it as proposed future work in Section 6.1.

4.1 Formal Property Verification

Under this technique, design specification is described as a set of properties either in

SystemVerilog or PSL (Property Specification Language). FPV, also popularly known as

assertion-based verification (ABV), is essentially a method to prove that these properties

hold for all legal input combinations and resulting reachable states for those inputs [31].

The generic flow of an FPV effort is indicated as Figure 4.2 [1]. The inputs to FPV are

an RTL model, a set of properties to be proven, and a set of constraints. Assertions and

cover statements form the set of properties which are required to be proven. An assertion

is a statement about the design that is expected to always be true [1]. A cover point is

a statement that describes an interesting condition or behavior about the design. It is

33

expected to be true occasionally, with a minimum of one occurrence. Assumptions along

with clock and reset definitions constitute the set of constraints. Assumptions, similar

to assertions, represent behavior that is universally true. In contrast to assertions, which

describe DUV behavior, assumptions define the verification environment.

FPV uses a set of techniques to identify reachable states, and subsequently, verifies

that the defined properties hold true in all reachable states. Traditional state enumeration

technique uses an algorithm, like breadth first search, to calculate the reachable states. It

continues enumeration until no additional states can be reached. Bounded model checking,

on the other hand, uses different techniques. The most successful bounded model check-

ing algorithm effectively converts the sequential design into a combinational circuit by

unrolling it to bound k. Once unrolled, a satisfiability check is performed to determine if

the properties are satisfied. Additionally, model checking uses satisfiability modulo theory

(SMT) solvers, rewrite techniques and combinations of different algorithms. Post analysis,

the model checking tool provides three plausible outputs for each property, namely proof,

disproved/unreachable result, inconclusive or bounded proof. The list of proven properties

includes proven assertions and unreachable cover statements. Every disproved assertion

is supplemented with a counter-example waveform illustrating a failure scenario. Each

reachable cover point provides a reachability trace describing the scenario in which the

cover statement is achieved. An inconclusive or bounded proof indicates that the property

was verified for a limited number of clock cycles from reset state.

Ideally, an FPV exercise aims to prove all assertions and strives to reach all valid cover

statements. In such a scenario, engineers should review the proof environment to ensure

that the design is not over constrained. In case of counter-examples and unreachable prop-

erties, manual debug effort is invested to identify the source of failure. Either the design is

updated or constraints are refined to eliminate the failure. Nevertheless, inconclusive re-

sults are also useful as they signify partial success. If the bound on the result is sufficiently

34

Figure 4.2: FPV tool execution. Reprinted from [1]

high, we can conditionally declare success as a counter-example could not be identified.

Property verification is not restricted to any given phase of the design flow. It serves as

a generic tool providing numerous capabilities to interact with the implementation. Typical

usage models of formal property verification are listed below [1].

1. Early design exercise FPV: Model checking can be used to gain insight into the

initial functionality of the design. It can provide an instant test-bench to detect initial

stage design flaws [32]. This exercise serves as a sanity check before the design is

modified or released to the full fledged verification team.

2. Bug hunting FPV: Property verification is extremely powerful in detecting corner

cases. Therefore, it could be used in collaboration with a simulation based approach.

Specific high risk features are described as necessary properties and bugs are de-

tected as counter example traces of the defined assertions.

3. Full proof FPV: Property verification could also serve as a complete replacement to

simulation-based verification. In this usage model, the specification is fully defined

as properties. Proof of the properties for all possible design states would imply that

35

the design conforms to the specification. This is the ideal usage model envisioned

by the pioneers of formal verification. However, full proof FPV is infeasible for a

majority of designs due to state space explosion and complexity.

4. Specialized FPV: Model checking is often applied to specific problems in the digital

design cycle. A few examples include unreachable coverage elimination, connectiv-

ity [33], post-silicon debug [34], and protocol verification.

Our primary goal is to achieve full-proof verification of the cache module, with focus

on the communication interface and coherence. Nonetheless, we explore opportunities to

leverage other FPV usage models along the process of full-proof verification. Specifically,

we also focus on FPV during bug fixes, unreachable coverage elimination, and FPV to

understand legacy designs.

4.1.1 Verification Plan

A well-thought out plan is the first crucial step to a successful FPV endeavor. It is

necessary to explicitly outline the objectives of the verification process. In this section, we

describe our plan in terms of properties, verification levels, and completion criteria.

A brief summary of the formal verification plan is captured in Table 4.1. Our preferred

tool for formal analysis is JasperGold from Cadence Design Systems. The goal is to

verify coherence, consistency and the communication infrastructure. Cover statements are

required to capture all documented transactions and basic behavior. Assumptions must

limit the input space to legal combinations alone. Assertions, which are properties derived

directly from the design specification, are primarily concerned with coherence and the

input-output protocol.

The planned verification is staged into two-levels, namely uni-core and multi-core

modules. Firstly, we define properties for the uni-core design with meaningful assump-

tions imposed on the inputs from other cores. Next, we extend verification to the multi-

36

Table 4.1: Formal verification plan

Goals Verify cache coherence and memory consistency
Verify the communication infrastructure (IO protocol)

Method Formal property verification (model checking)
Properties Cover-points:

Typical behavior and transactions
Assumptions:
Constraints on the inputs
Prevent illegal stimulus
Represent entire range of legal behavior
Assertions:
Single-write multiple-read invariant
Data value invariant
Communication interface assertions
Liveness guarantee

Staging plan

• Unicore module
- Single cache line
- Immediate bus access grant
- Pseudo-LRU operation

• Multi-core module

Complexity reduction
- Structural abstraction (parameterization)
- Free variables
- Memory abstraction

Exit criteria

Time limit
Quality of proof
Coverage
Bugs discovered

core module by converting uni-core assumptions into assertions. This technique ensures

that assumptions in the uni-core set-up do not over-constrain the design. The multi-core

environment would still require some constraints on its inputs coming from level-2 cache.

Additionally, verification of the uni-core module is staged in increasing order of complex-

ity. Simplifications are assumed in the initial stages to enable easy debug. First, we prove

the MESI invariants for a single cache line alone. Second, we do not consider the pseudo-

LRU algorithm in our verification scope. Third, we assume that the arbiter would grant

37

bus access to our module immediately on the next cycle. These assumptions are excluded

gradually as we make verification progress. Thus, the final stage of uni-core FPV does not

include any presumptions.

The biggest threat to FPV is state space explosion. We employ effective complexity

reduction techniques to tackle the state space problem. We leverage parameters of our

design to reduce the size and make it tractable for JasperGold. Parameterized designs are

ideal to apply structural abstraction [35]. Additionally, we also utilize free variables and

memory abstraction within our formal analysis.

Simulation techniques usually decide process completion based on verification quality

parameters like coverage, regression status, bug rate and quality, and pass percentage.

Similarly, FPV completion can be analyzed as a combination of metrics. We set aside a

fixed time limit for our FPV effort. This is common practice in the industry as teams need

to meet aggressive time-to-market schedules. We analyze coverage, bugs discovered, and

quality of proof to declare verification completeness.

4.1.2 Cover Statements

Cover points are useful to demonstrate that the proof environment can support typical

behavior expected from the design. Statements would normally depend on the design-

under-verification and its most critical functionality. However, common conditions listed

below serve as good guidelines while defining effective cover points [1].

• Each waveform in the specification should map to a cover statement.

• Inputs and outputs must be capable of assuming all legal values in the environment.

• Every transaction type should be covered.

• Every state within the design is reachable.

38

• Easily identifiable error case scenarios should be included.

A complete list of cover points for our design, identified with the above directives, is

provided in Appendix B.1. Abstract statements are converted into SystemVerilog cover

points before they are fed into JasperGold.

Often, cover statements are incorrectly treated as an afterthought for FPV. This is a

critical mistake as proven assertions do not have any significance if the FPV environment

prevents basic operations. An over-constrained environment could disallow typical trans-

actions on the DUV. Therefore, cover points are the primary focus during the initial stages

of FPV. In the nascent phase of FPV, assumptions are refined through an iterative pro-

cess, termed as wiggling the design. It is crucial to manually observe cover traces and

confirm functionality during the wiggling process. Subsequently, cover traces should be

analyzed every-time there is a change to the set of constraints. We rigorously follow the

aforementioned recommendation to ensure sanity of our FPV environment at every stage.

On the other extreme, engineers with a strong simulation background could easily

develop an affinity to cover statements, as they are strikingly similar to test scenarios. This

situation is equally undesirable as reachable statements can only guarantee a possibility

of good behavior. They do not verify good behavior under all circumstances. Therefore,

we should prevent cover statements from turning into a set of simulation test cases. The

ultimate focus of FPV is to prove assertions. This further reinforces the belief that formal

analysis requires a fundamentally different perspective when compared to simulation.

4.1.3 Complexity Staging

We subdivide the verification process into two levels, namely the uni-core module and

the multi-core module. As described earlier, the many-core module consists of multiple

instantiations of the uni-core block. First, we define a complete set of properties for the

uni-core module. Several assumptions are imposed to limit the input stimulus to legal

39

combinations. Once cover statements and assertions are proven at the single core level, it is

crucial to validate the constraints utilized for FPV. If the set of assumptions over-constrain

the design space, our proof is incomplete. Constraints can be justified in several ways. We

could provide arguments from the input specification. Alternatively, we could assert the

constraints in a simulation regression suite, typically at a higher level of hierarchy (IP/SoC

level). In our case, we simply convert the uni-core assumptions into internal assertions in

the multi-core environment. As a result, the assumptions are automatically validated at the

next level of verification. Constraints in the multi-core environment, which are concerned

with signals coming from the level-2 cache and arbiter, are justified using arguments from

the design specification. All assumptions utilized in our FPV exercise are described in

Appendix B.2. We verify that all assertions are valid in the multi-core model as well.

This is necessary to reveal any concurrent behavior that was not present in the uni-core

model. Additionally, the multi-core model may contain deadlocks or livelocks which are

not present in the uni-core model.

Techniques to handle complexity in large designs can be classified into either under-

constraints or over-constraints. Under-constraining the design makes it more generic by

abstracting away intricate details. With a more generic design, we run the risk of false

negatives which demand greater debug effort, but false positives are impossible. Over-

constraining, on the other hand, makes the design more specific. Therefore, it can lead to

false positives. In other words, there is the possibility of a faulty design being declared

correct and functional. As a result, over-constraining the model is extremely risky and

needs to be justified.

Nonetheless, it is straight forward to debug and understand a simplified design, es-

pecially during the early stages of verification. A simple model with a limited set of

behavior can be obtained with over-constraints. Once we comprehend and debug a vari-

ety of transactions, we can gradually eliminate certain constraints to extend support for

40

more complex behavior. Strict adherence to LRU operation is not critical to coherence or

consistency. Therefore, we exclude verification of pseudo-LRU functionality in all stages

to simplify our FPV effort. We execute uni-core module FPV in the below listed stages,

which increase in level of complexity.

1. Stage-1

In the simplest stage of FPV, we prove MESI transition assertions for a single cache

line. We assume that system bus access is granted to the module immediately.

Writes are restricted to data blocks alone. Additionally, a invalidate request is also

serviced immediately on the next clock cycle. We assume that data will be provided

on the shared bus within a fixed latency of 2 clock cycles. Assumptions specific to

stage-1 are listed in Appendix B.2.1.1.

2. Stage-2

In stage-2, we allow write operations to instruction cache, and verify that they are

not performed by the implementation. We prove the MESI assertions for all cache

lines. We increase the bus latency to 3 cycles. Assumptions specific to stage-2 are

listed in Appendix B.2.1.2.

3. Stage-3

In stage-3, we describe arbiter and level-2 behavior more accurately. We assume that

a level-1 cache is granted primary system bus access within 45 cycles. We arrived at

an estimate of 45 cycles, based on the realistic observation that each level-1 request

can take a maximum of 15 clock cycles. This is the theoretical worst case estimate

for a 4-core system, in which all other level-1 caches perform eviction and write

back before access is granted to our L1-cache of interest. Additionally, we place a

realistic assumption that snoop access is granted only for blocks present in modified

or exclusive states. Snoop grant may or may not be granted for a block in shared

41

state. Based on observations in the multi-core FPV, we placed modified the bus

latency to a maximum of 9 clock cycles. Assumptions specific to stage-3 are listed

in Appendix B.2.1.3.

Clearly, the final stage of the uni-core FPV does not permit any over-constraining as

stage-3 constraints are realistic in the final implementation.

4.1.4 Assertions

The crux of formal property verification is the set of assertions. Assertions are derived

directly from the design specification. Goals of the FPV exercise dictate the number and

type of assertions. A design sanity FPV would be complete with limited assertions ensur-

ing basic behaviors alone. Similarly, it would suffice to describe risky features as prop-

erties for bug hunting FPV. However, a full-proof verification is expected to completely

replace simulation. Therefore, the complete specification is required to be captured as

SystemVerilog assertions.

Since the simulation effort preceded formal verification, we used assertions identified

for simulation as the starting point for FPV. Assertions from the UVM environment were

limited and mostly unsuitable for FPV. Hence, a significant effort was needed to develop

properties appropriate for FPV. It is occasionally acceptable to define assertions with in-

finite length sequences in simulation, but they are unsuitable for formal property verifi-

cation due to state space explosion. Similarly, MESI transition, memory coherence, and

some interface assertions are not required in the UVM environment due to the presence of

a reference model and elaborate monitors.

The set of properties used for our FPV is presented as Appendix B.3. We classify proof

targets based on the specific feature that they represent. We have the following categories

of assertions:

1. CPU-lv1 interface

42

2. System bus interface

3. Bounded liveness properties

4. MESI state transitions

5. Coherence and memory consistency

6. Bug fix assertions

Appendix B provides complete detail of the covers, assumptions, and assertions. FPV

properties are stored in a separate module known as the verification component (VCOMP).

It is basically a SystemVerilog module with only input ports. All the cover statements, as-

sumptions and assertions are defined within this module in terms of its inputs. Finally, the

VCOMP is bound to the relevant design module with the ’bind’ directive in SystemVer-

ilog. Verification components separate FPV properties from the design. We can easily

void the bind directive in synthesis or simulation. Assertions embedded in the design,

when large in number, can delay simulation runs significantly. This is avoided with the

practice of encapsulating properties in a verification component.

4.1.5 Complexity Reduction Techniques

Formal techniques are inherently solving an NP-complete problem. Consider a design

with n state elements, which are either flip-flops or latches, and m input signals. State

of the design is comprised of both state elements and inputs. Theoretically, it could have

2(m+n) possible configurations in its state space. Therefore, even for reasonable values of

m and n, the formal task is challenging. Exponential growth in state space with increase

in design size is the main source of complexity in formal analysis. However, in practice,

only a portion of the entire design space can be reached from the reset state. Additionally,

the FPV tool only needs to analyze state in terms of the logic cone, also known as Cone

43

of Influence (COI), of the property. These factors along with numerous advances in recent

years help enable formal analysis of large designs.

Despite improvements in formal technology, state space explosion still presents a ma-

jor hindrance to full scale adoption of formal methods [1]. Complexity issues are easily

identifiable. They typically show up as tool crashes, time-outs, memory blowups, and

bounded results. Clever techniques like abstraction, black-boxing, and cut-points are re-

quired to navigate complexity. In this section, we discuss techniques used to overcome

complexity issues encountered during FPV of our cache design.

4.1.5.1 Formal friendly properties

It is easy to describe the same property in numerous ways using SVA. Unlike the

Python programming language, SystemVerilog assertions allow various options to de-

scribe the exact same behavior. In order to facilitate formal analysis, we ensure that

properties are simple and small. Here, we describe specific examples of formal-averse

and formal-friendly properties for equivalent behavior.

Consider the properties shown below:

1 A1 : a s s e r t p r o p e r t y ((a | | b) |−> c) ;
2 A2 : a s s e r t p r o p e r t y (d |−> (e && f)) ;

We can easily re-write the above properties as multiple smaller assertions shown below.

This is most helpful when a, b, e and f are not boolean signals, but complex sequences.

1 F1_1 : a s s e r t p r o p e r t y (a |−> c) ;
2 F1_2 : a s s e r t p r o p e r t y (b |−> c) ;
3 F2_1 : a s s e r t p r o p e r t y (d |−> e) ;
4 F2_1 : a s s e r t p r o p e r t y (d |−> f) ;

On several instances in the uni-core module, we are required to assert that signal x

remains logic high until a rising edge of signal y is observed. We illustrate the formal-

averse property below:

1 A1 : a s s e r t p r o p e r t y ($ r o s e (x) |= > x u n t i l $ r o s e (y)) ;

Although the above property is natural and easy to understand, ’until’ keyword in

44

SystemVerilog leads to problems in FV. Most simulation engineers are accustomed to

describe properties in the above coding style. We can represent the same behavior with a

formal-friendly, boolean assertion as shown below:

1 F1 : a s s e r t p r o p e r t y (x && ! y |= > x) ;

Similarly, in order to ensure that data is unchanged as long as data_valid remains high,

we can easily avoid the until directive by replacing A1 with F1 as shown below:

1 A1 : a s s e r t p r o p e r t y ($ r o s e (d a t a _ v a l i d) |= > $ s t a b l e (d a t a) u n t i l $ f e l l (d a t a _ v a l i d)) ;

1 F1 : a s s e r t p r o p e r t y (d a t a _ v a l i d |= > (! d a t a _ v a l i d | | $ s t a b l e (d a t a))) ;

Liveness properties are the hardest to prove in FPV. Typically, they result in infinite

length sequences which triggers the state explosion problem. Therefore, it is immensely

helpful to re-write liveness using finite length properties as real world systems are ex-

pected to respond in finite time. In order to guarantee that every CPU read operation

eventually obtains a response, we could inefficiently define an infinite length assertion as

shown below.

1 A1 : a s s e r t p r o p e r t y ($ r o s e (cpu_rd) |−> s _ e v e n t u a l l y (d a t a _ v a l i d)) ;

Analysis is easier for the FPV tool if we guesstimate a worst case latency for the CPU

read operation as described below:

1 F1 : a s s e r t p r o p e r t y ($ r o s e (cpu_rd) |−> # # [1 : 5 0] $ r o s e (d a t a _ v a l i d)) ;

In summary, we followed the below principles to enable easier analysis:

1. Divide complex behaviors into small, simple properties

2. Perform boolean simplifications whenever possible

3. Avoid directives like until, s_eventually, and throughout

4. Make liveness properties finite

45

Inefficient coding does not merely apply to assertions alone. Assumptions, which are

coded in a formal-averse manner, can cause greater damage as they appear in the fan-in

of several assertions. A poorly coded assertion affects only itself, but a badly written

assumption can affect several properties.

4.1.5.2 Auxiliary code

Assertion languages have limited scope and expressiveness. It is impossible to define

overlapping behavior in SVA. For instance, consider the requirement that every pulse on a

’request’ signal should be acknowledged by a corresponding pulse on signal ’ack’ within

4-8 cycles. We cannot define assertions to fully capture this condition. Therefore, we

utilize auxiliary SV code which keeps track of pending requests. Supplementary SV code

is embedded in the verification component module in order to keep it isolated from the

design.

Additionally, certain behaviors are extremely complex to be described in SVA alone.

FPV can benefit immensely with the additional of SV code for such scenarios. Auxiliary

code simplifies the properties, making analysis easier for the FPV tool. Therefore, we of-

ten use additional SV code within our verification component to facilitate FPV. Typically,

auxiliary code is in the form of finite state machines and counters. One particular example

is the behavior of the round-robin arbiter in our system. Assumptions which characterize

the behavior of our round-robin arbiter, are possible only with auxiliary code which re-

members the number of grants provided to other L1 caches. Reference models for data

coherence, described in the next section, are a special case of auxiliary code.

4.1.5.3 Reference models

Reference models convert a portion of the FPV exercise into formal equivalence verifi-

cation. Complex assertions, defined on internals signals within the DUV, are transformed

into a direct comparison between the RTL and the reference model. As a result, they

46

increase the capacity of the FPV tool.

Within the purview of our FPV exercise, we define a reference model to assist the co-

herence assertions described in Appendix B.3.1.5. This model simply maintains a copy of

valid data for the entire address space. Within the assertions, it suffices to compare our

copy of valid data with the model outputs. Despite its benefits, we should exercise re-

straint and avoid excessive use of auxiliary code. It is inefficient to recreate large, intricate

portions of RTL within the verification component. With excessive SV code, we run the

risk of false positives, due to bugs present in both the reference model and the RTL.

4.1.5.4 Parameterization

Structural abstraction is the most significant and straight forward method to reduce

complexity. If the design is parameterized, we can easily simplify a large data-path or

complex structure. Consider the case of a wide data bus with the same logic for every data

bit. We can minimize the width to a single bit and still maintain confidence in FPV.

Within the purview of our design, we exercise SystemVerilog parameters to make FPV

feasible on our implementation. We reduce the address width to 7 bits, L1 cache size to

64 bits, number of cache sets to 4, and address tag to 3 bits. This decision was the biggest

enabling factor for our FPV effort. Almost all the properties were inconclusive when FPV

was performed on the full-size design. Despite the massive reduction in design size, we

can theoretically argue that all behaviors possible in the original size design are retained

in the reduced model. For instance, if we minimized the design to consist of single cache

set, we could clearly point out complex behavior that is improbable in the reduced model.

Parameterization can be made complete by using induction to prove from the base case,

that the arbitrary general parameterized model is correct.

47

4.1.5.5 Free variables

Free variables, similar to primary inputs, can be assigned arbitrary values by the FPV

engine subject to imposed constraints. A free variable is typically added to facilitate for-

mal verification when the model contains significant amount of symmetry [1]. In such a

scenario, we can exploit free variables to generalize formal analysis. Different cases ex-

ercising similar logic is combined and verified by a single assertion rather than separate

properties.

In our FPV effort, we introduce a free variable to represent cache line number, by

declaring a new variable within the verification component. Without the concept of free

variables, MESI protocol assertions are realized with the help of a generate statement as

shown below:

1 parameter NUMBER_OF_CACHE_LINES = 1 6 ;
2 g e n e r a t e f o r (genvar i =0 ; i <NUMBER_OF_CACHE_LINES ; i ++) begin
3 A1 : a s s e r t p r o p e r t y M E S I _ a s s e r t i o n (i) ;
4
5 end
6 endgenerate

The above code snippet would create 16 instances of MESI assertions, one for each

cache line. Similar logic is verified in slightly different versions of the same assertion,

resulting in a lot of inefficiency. With the addition of a new free variable, we can generalize

analysis for all the cache lines. Therefore, we rewrite assertion A1 as shown below to

exploit symmetry within the design.

1 parameter NUMBER_OF_CACHE_LINES = 1 6 ;
2 i n t f r e e _ i ; / / f r e e v a r i a b l e
3 U1 : assume p r o p e r t y (f r e e _ i >=0 && f r e e _ i < NUMBER_OF_CACHE_LINES) ;
4 U2 : assume p r o p e r t y (##1 $ s t a b l e (f r e e _ i))
5 A1 : a s s e r t p r o p e r t y M E S I _ a s s e r t i o n (f r e e _ i) ;
6

Here, variable ’free_i’ can take any of the 16 legal values, thereby forcing a broader

analysis of the assertion. The FPV tool can exploit symmetry and similarity in logic to

prove the assertion for all cache lines at once. Restrictions on the free variable are ex-

tremely significant and need to be justified. Here, we simply impose constraints on the

48

new variable to take on legal values and remain constant throughout a trace execution.

Nevertheless, introduction of free variables is a double-edged sword. If we combine com-

pletely dissimilar logic with the help of a new variable, tool efficiency would decrease

significantly.

4.1.5.6 Memory abstraction

Large memories, queues and counters are the most problematic structures for formal

verification. They are often replaced by abstract models to facilitate effective analysis.

Black-boxing, cut-points, and free variables can be considered simple forms of abstrac-

tion. Essentially, we retain only a significant portion of the model, while abstracting away

intricate details.

Our cache implementation has a large memory, but this is already handled with pa-

rameterization. However, within the verification component, we are required to accurately

recreate behavior of the level-2 cache and main memory. Even in the minimal system,

level-2 cache is required to hold values of 32 blocks each 4-bit wide. We cannot obtain

FPV proof results without an accurate assumptions on outputs of the level-2 cache. This

is made possible through simple memory abstraction technique. Auxiliary code within the

verification component adds to state space problem as well. Thus, memory abstraction of

level-2 cache is crucial to our FPV effort.

We replace a full-capacity level-2 model with a small set of interesting locations. Using

free variables, we restrict access to a maximum of ten different locations in one execution-

trace. This significantly reduces complexity as we track only 10 blocks within the veri-

fication module. This is a reasonable assumption, as no interesting behavior is excluded.

In general, abstraction is not a fool proof method, it is capable of over-constraining the

design, which in turn can lead to false positives.

49

4.2 Formal Equivalence Verification

Formal equivalence verification (FEV) is the mathematical process of proving two

distinct models to be logically equivalent. These two models are typically referred to as the

specification (SPEC) and the implementation (IMP). Specification, generally more abstract

as compared to IMP, is either an RTL description, a high-level model, or a synthesized

netlist. Implementation, which is more concrete, could be an updated RTL specification

or an optimized netlist. Several notions of equivalence exist depending on the points of

comparison between the two models. Aspects of the two modules which form the basis of

comparison are known as key-points. Common key-points include inputs, outputs, state

elements, and cut-points [1].

On the basis of the definition of equivalence, FEV can be classified into the following

categories [1]:

1. Combinational Equivalence:

Combinational equivalence, also known as state-matching equivalence, is the most

mature FEV technique [36]. Key-points for this method include inputs, outputs

and all state elements. The two models are expected to have equivalent internal

states given the same input stimulus. This is easiest form of equivalence in terms

of analysis, as the tool can treat state elements as cut points. It is only required

to compare combinational logic between flip-flops and latches. A huge limitation

of state-matching is that even minor changes in structure can disrupt equivalence.

Despite this limitation, combinational equivalence is the norm in synthesis of dig-

ital designs. The synthesized netlist is expected to be state equivalent to the RTL

implementation.

2. Sequential Equivalence:

Two models are known to be cycle-accurate or sequentially equivalent if their out-

50

puts match on every clock cycle given the same set of inputs [37]. Key-points for

comparison are comprised of only primary outputs. Despite changes to state repre-

sentation, pipeline depth, and internal timing protocols, sequential equivalence can

verify equivalent designs.

3. Transactional Equivalence:

Transactional equivalence is a relatively nascent technology used to compare be-

tween a highly abstract model and an RTL implementation. The high level model is

not cycle-accurate but rather transaction accurate [38]. In other words, comparison

is performed at the boundaries of defined transactions. This definition of equiva-

lence is more generic as compared to earlier notions. However, it is also the most

challenging form of FEV.

At its core, FEV is similar in several aspects to FPV. In the absence of a dedicated FEV

tool, we can perform equivalence verification by defining properties that assert equivalent

key-points. The typical FEV execution flow is depicted in Figure 4.3. Inputs to the FEV

tool include input constraints, the two models for comparison and key-point mappings.

Outputs from the FEV tool are one of three possibilities, namely proven equivalence, in-

conclusive, or an inequality. If inequality is established, a counter-example is provided for

the scenario that captures the difference.

Common usage models for FEV are described below [1, 39]:

• RTL vs netlist equivalence

During logic synthesis, the synthesized netlist is often compared against the original

RTL for functionality. Combinational equivalence with is generally used for this

exercise.

• Verification of parameterization

Adding configurable parameters to a legacy design is a risky affair. Designers of-

51

Figure 4.3: Typical FEV execution

ten fear that basic functionality could be disrupted in the process. Combinational

FEV is an easy check to ensure that functionality in the default configuration is pre-

served. The non-parameterized model is compared against the parameterized model

in default configuration. However, FEV does not comment about functionality in

a new configuration. In other words, it does not guarantee that parameterization is

complete and successful. Induction proofs can be used to completely verify param-

eterization.

• Validating timing fixes

Timing changes are often performed late in the design cycle. Techniques to ease

timing include logic distribution, and critical path reduction. Simple sequential FEV

allays fears of a broken design.

• Chicken bit validation

Late in the design process, de-feature (chicken) bits are added to disable design

52

changes with low confidence. FEV can provide peace of mind by proving equiva-

lence between the stable design and updated design with chicken bit enabled.

• Clock gating verification

Clock gating is an important power reduction technique, which is capable of disrupt-

ing functionality late in the design process. Proving equivalence between original

and gated implementations prevents the addition of undesirable failures.

With reference to our study, we could not comprehensively investigate the application

of FEV techniques to our design due to limited resources and time. However, as a simple

case study, we proved equivalence between the initial unparameterized design and the up-

dated, configurable implementation. The legacy design did not facilitate a flexible number

of cores. We added this feature to the module and ensured equivalence for the default con-

figuration of 4 cores. This was performed using the JasperGold Sequential Equivalence

Checking (SEC) application. Although this exercise was trivial enough to be realized in a

few minutes, it demonstrates the effectiveness of FEV during design updates as described

earlier in this section. It reinforces our belief that formal techniques serve as a generic

tool-kit with numerous opportunities to interact with the RTL implementation.

53

5. RESULTS

In this chapter, we present results obtained using the two verification techniques. We

describe the metrics used to analyze progress in simulation and formal methods. Addi-

tionally, critical design changes made to fix deviations from the specification are reported

under each technique. A vital coherence issue, due to contention between CPU and snoop-

side requests, was identified in formal analysis. This led to a significant revamp of the

micro-architecture, which is detailed in Section 5.2.2. The tools, and infrastructure used

in each approach are summarized in Table 5.1.

Table 5.1: Infrastructure for verification

UVM Environment Formal Verification
Language SystemVerilog and UVM SystemVerilog Assertions

Tool(s)

Cadence Irun
SimVision
VManager
Incisive Metrics Center

Cadence JasperGold FPV App
Cadence JasperGold SEC App

Machine

Dell PowerEdge R815
4 AMD Opteron 6174 Processors (48 2.2 GHz cores)
256 GB main memory
CentOS 5.7 x86_64

5.1 UVM Environment

The system parameters used within the UVM environment is the original design intent,

which is 32-bit address, 32-bit instruction and data blocks, and a 4-core configuration.

Level-1 cache has the following settings: 16-bit address tag, 14-bit set index, 2-bit offset,

2 Kilo-Bytes each for data and instructions, and 4-way set associative. Level-2 cache is

8-way set associative model with a unified capacity of 8 Mega-Bytes. However, a reduced

54

size configuration, equivalent to that used in the formal technique, is also analyzed in the

UVM environment. This is possible due to the flexible nature of our UVM test-bench. It

ensures that functionality is not lost in the reduced configuration. Results obtained from

the minimal parameters are clearly specified with the label ’RC’.

Table 5.2: Time-line of verification progress

Date Infrastructure
developed (%)

Test-cases
developed

Test-cases
passing

Pass rate
(%)

28-Oct-16 0 0 0 N/A
04-Nov-16 20 0 0 N/A
11-Nov-16 40 6 3 50.00
12-Nov-16 70 15 8 53.33
13-Nov-16 75 16 16 100.00
25-Nov-16 80 16 16 100.00
01-Dec-16 95 16 16 100.00
02-Dec-16 100 21 18 85.71
04-Dec-16 100 22 21 95.45
08-Jan-17 100 22 21 95.45
10-Jan-17 100 22 22 100.00
14-Apr-16 100 22 21 95.45
12-May-17 100 22 21 95.45
19-May-17 100 22 22 100.00

We successfully developed the necessary infrastructure and executed the verification

plan outlined in Chapter 3. The execution timeline is presented as Table 5.2. It describes

the number of test-cases coded and passing with a single fixed seed. Additionally, an

estimate of infrastructure development is provided. At the close of our project, we were

able to execute all test scenarios without any failures.

We developed a regression suite consisting of 22 test-cases, each verified over hundred

random seeds. Progress in the regression suite is depicted in Tables 5.3 and 5.4 for the

original and minimized (RC) configurations respectively. A graphical illustration of the

55

Table 5.3: Status of regression suite for original design parameters

Date Test-cases run Test-cases passing Pass rate (%)
11-Nov-16 6 3 50.00
12-Nov-16 180 167 92.78
13-Nov-16 320 320 100.00
01-Dec-16 1600 1600 100.00
02-Dec-16 2100 1987 94.62
04-Dec-16 2200 2119 96.32
08-Jan-17 110 97 88.18
10-Jan-17 110 104 94.55

12-May-17 440 407 92.50
19-May-17 440 440 100.00
26-May-17 2200 2200 100.00
02-Jun-17 2200 2200 100.00
09-Jun-17 2200 2200 100.00

Table 5.4: Status of regression suite for reduced design parameters (RC)

Date Test-cases run Test-cases passing Pass rate (%)
14-Apr-17 440 414 94.09
12-May-17 440 418 95.00
19-May-17 440 440 100.00
26-May-17 2200 2200 100.00
02-Jun-17 2200 2200 100.00

pass rate is provided as Figure 5.1. We notice the presence of a blocking bug in early

December 2016, which led to several regression failures. The source of these failures was

identified to be contention between the processor and snoop-side requests. Simultaneous

requests to the same address block from the CPU and system bus, led to several failures. In

order to diagnose and device a solution to this concurrency issue, we reduced the number

of random seeds to 5, resulting in a total of 110 test cases in the suite. Although, this issue

was identified in simulation, we failed to define a suitable solution in spite of numerous

attempts. We were able to reduce the failure rate occasionally, but failed to eliminate

56

the error completely. This was because errors cropped up only in random tests, which

had a substantially large simulation time. It was challenging to isolate the failure causing

transactions from irrelevant transactions. Finally, a definitive solution was identified in

formal analysis, as described in Section 5.2.2. Once this fix was implemented, we switched

to hundred random seeds and obtained complete success in our regression suite.

Figure 5.1: Pass rate based on regression suite

Critical bugs identified and fixed in simulation are described in Section 5.1.1. There-

after, coverage metrics are provided in Section 5.1.2.

5.1.1 Bugs Discovered

A total of 13 bugs were discovered, and 12 were fixed using the UVM simulation

framework. An important point to note is that preliminary verification was already per-

formed on the legacy design, similar to how designers sanity check RTL prior to release

to the verification team. As a result, most trivial bugs were eliminated before creation of

57

the UVM framework.

5.1.1.1 Signal cp_in_cache de-asserted during bus_rd_snoop

Consider a scenario in which data block A is present in L1-cache0, which services

CPU0. In response to an incoming snoop side bus_rd_snoop request from L1-cache1 for

block A, L1-cache0 should respond by asserting signals cp_in_cache and shared_local.

Signal shared_local was asserted but cp_in_cache remained low. This is corrected by a

minor fix to the RTL of the main functional cache block.

5.1.1.2 Signal cp_in_cache de-asserted during bus_rdx_snoop

Consider the behavior in the previous bug, but for an incoming bus_rdx_snoop request

This flaw is fixed by a minor correction to the RTL.

5.1.1.3 Signal shared_local not generated for modified snoop block hit

Imagine a situation in which data block A exists in modified state in L1-cache0. A

read operation by CPU1, initiates a bus_rd request from L1-cache1. L1-cache0 observes

the bus read request and performs write-back of block A. Once level-2 write is success-

ful, L1-cache0 should supply block A to L1-cache1 with the shared_local signal enabled

to indicate that the block is shared. However, the implementation incorrectly drives the

shared_local signal low when data is provided to L1-cache1 on the system bus. A simple

fix resolved the issue.

5.1.1.4 Incorrect LRU replacement

When the LRU state variable is 3’b1x1, way-3 should be replaced from the cache set,

according to the specification. Our legacy implementation incorrectly evicts way-2 of the

cache set.

58

5.1.1.5 Incorrect instruction address bound

Our implemented incorrectly treated address 32’h3FFFF_FFFF as a data access. The

specification dictates that this is a instruction address. This was caused by the use of a

wrong relation operator.

5.1.1.6 MESI state update during invalidate_snoop

Consider a situation in which two level-1 caches (0 and 1) have a data block A in shared

state. When CPU1 performs a write operation to block A, L1-cache1 would send out an

invalidate request on the system bus. The incoming invalidation message is processed by

L1-cache0, but the MESI state of block A is not changed to invalid. Internally, the MESI

state was updated by the wrong variable. This is corrected by fixing the internal variable.

5.1.1.7 LRU eviction does not invalidate cache line

In the case that a cache set is full, an incoming CPU operation to the same set, which

results in a miss, would force eviction of a cache line. If the evicted cache line is in

modified state, dirty data is written to level-2 cache, but the cache line is not invalidated.

As a result, the CPU operation is not successful. Behavior was similar for eviction of a

shared block. Once again, the cause of this bug was a faulty internal variable.

5.1.1.8 Bus request dropped after LRU eviction

The specification states that LRU replacement and the bus request should be performed

as a single operation on the system bus. Our legacy design drops the request for primary

bus access soon after the eviction is completed. A new request for the common bus is

initiated later to receive the CPU requested data block. This is a clear deviation from the

specification, which is rectified with minor corrections to the RTL.

59

5.1.1.9 Response to snoop-side invalidate request

Consider a block A to be present in shared state in 3 level-1 caches (0,1 and 2). A write

request from CPU2 would generate an invalidate on the system bus from L1-cache2. Our

legacy design is tuned in such a way that both L1-cache0 and L1-cache1 respond by assert-

ing their own invalidation_done signals for exactly one clock cycle. In most scenarios, L1-

cache0 and L1-cache1 respond at the same clock (immediately), therefore error is masked.

If either of the caches took longer to respond, then all_invalidation_done signal is never

generated. A late response is possible during corner cases such as a parallel conflicting

CPU request. Fortunately, we identified this error in one of the pseudo-random test-cases.

We fixed the issue by forcing the uni-core module to assert the invalidation_done signal

until all_invalidation_done is observed as logic high.

5.1.1.10 Discrepancy with reference model due to silent eviction

This discrepancy between the cache reference model and the implementation is due

to the non-atomic nature of state transitions. Cache reference model assumes that each

CPU operation is atomic, and concurrent CPU operations are executed in a fixed order as

received on the CPU monitors. Arbiter in the design should essentially ensures that any

conflicting operations are serialized. We illustrate the issue with the help of an example as

shown in Figure 5.2.

Consider 5 data blocks (A1, A2, A3, A4, and A5) belonging to the same set A. L1-

cache0 has blocks A1, A2, A3, and A4 in shared, exclusive, modified and modified states

respectively. L1-cache1 receives a CPU read for block A2. It sends out a request for

primary access (proc) to the system bus. Once granted primary access to the common

bus by the arbiter, L1-cache1 sends out a bus read request for block A2. Simultaneously,

CPU0 transmits a read request for block A5, which triggers silent eviction of block A2

due to the LRU replacement policy.

60

Figure 5.2: Silent eviction issue

Our reference model dictates that the bus read to A2 is serviced by L1-cache0. It

assumes that as CPU read to A5 is not completed, eviction of A2 should not be done

yet. However, our design does not wait for bus grant before silently evicting a block in

shared or exclusive state. Therefore, bus read os A2 is serviced by level-2 cache. This

discrepancy is fixed by simply waiting for primary grant (proc grant) of the system bus

before performing silent eviction. This error cropped up only in tests with significantly

random stimulus. Debug effort required was high due to the waveforms with considerably

large simulation time.

5.1.1.11 Incorrect update of LRU state variable

The LRU state variable should be updated whenever a CPU operation is performed on

the cache set. Consider two sets A and B; block A1 resides in way-1 of set A and block

B2 is present in way-2 of set B. The CPU performs a read to B2, quickly followed by a

61

read to block A1. The LRU logic in our implementation updates its state whenever there

is a change in either block_accessed or index_proc, both of which are internally gener-

ated signals. Signal block_accessed is the output of a register while index_proc is mere

combinational logic. As a result, there is a single cycle delay between block_accessed and

index_proc. This delay causes the LRU state of set A to be updated as if way-2 was being

accessed before way-1 is looked-up. The expected behavior is that LRU state is updated

only considering access to way-1. This leads to incorrect LRU state.

This behavior manifested as the unnecessary eviction of a cache block several thousand

cycles after the actual bug. It was challenging to identify the source of faulty behavior.

Several design changes across the complete hierarchy were necessary to arrive at a working

fix. The IO ports of numerous internal modules were changed. Therefore, we consider this

bug a serious flaw, leading to a major design change. Finally, our fix ensured that LRU

state was updated only when a new internal signal lru_update was asserted. ’lru_update’

went high for exactly one cycle when the block being accessed is hit within the cache.

5.1.1.12 LRU state variable for shared to modified transition

This error is the result of the fix suggested in Section 5.1.1.11. Several test-cases

after the fix was made, we realized that the resolution was incomplete for a very specific

scenario. This corner case bug was extremely challenging to narrow down with each failed

waveform running for at least a few hundred thousand clock cycles. Although the LRU

state is updated incorrectly at a relatively early stage, it takes a lot of time before the bug

manifests itself as a failure.

We realized that for a CPU write operation, which triggers a shared to modified transi-

tion, internal signal lru_update is incorrectly generated multiple times. We fixed this error

by aligning lru_update to the actual CPU response.

62

5.1.1.13 Contention between CPU and snoop-side requests

The biggest challenge we faced in simulation was the contention issue between CPU

and snoop-side requests. Several failures within the regression suite were associated to this

issue. We noticed that whenever conflicting requests to the same block were made on the

CPU and snoop-side concurrently, several failures would be observed. Essentially the uni-

core module attempts to service both the CPU side request and the snoop-side operation

in parallel, which leads to unpredictable behavior. A simple example is a CPU write to

block A, which is present as modified in the cache, and a parallel bus_rdx message on the

system bus. As the cache attempts to service both requests, coherence and consistency are

effortlessly lost.

Although we narrowed down the source of failure, we failed to identify a complete

solution using the simulation framework. We attempted several fixes, but we could merely

increase the pass rate in regressions. We never managed to eliminate the issue completely.

Different fixes resulted in special corner-case errors, which took several days to analyze.

Each failing trace was at least five hundred thousand nanoseconds of simulation time with

numerous concurrent transactions. We gave up due to the sheer time and effort required

for analysis. Finally, we were able to resolve the issue with much ease in formal property

verification. We discuss this issue and its fix at greater length in Section 5.2.2.3.

5.1.2 Coverage

Coverage metrics obtained using the final regression run, with all cases passing, are

presented in Tables 5.5, 5.6, and 5.7.

We went through a few iterations to refine functional coverage by excluding unreach-

able cover points, after which we attained complete functional coverage. However, code

coverage values presented are unadulterated, without any waivers or exclusions. Refined

metrics obtained after manual analysis is presented in Section 5.4.3. Verification engineers

63

Table 5.5: Code coverage metrics without any exclusions

Instance Block Expression Toggle
Multi-core L1 cache 96.47% 93.69% 93.76%
Uni-core L1-cache(i) 96.47% 93.69% 89.49%
L1-cache(i) data cache 96.96% 99.11% 93.77%
L1-cache(i) inst cache 95.99% 69.44% 84.29%
L2 cache 83.08% 100% 65.03%
Arbiter 95.24% - 100%
Memory 71.43% - 53.25%

Table 5.6: Assertion coverage metrics

Type Coverage
CPU0-lv1 interface 100%
CPU1-lv1 interface 100%
CPU2-lv1 interface 100%
CPU3-lv1 interface 100%
System bus interface 100%
FPV assumptions 100%

Table 5.7: Functional coverage after analysis

Type Coverage
CPU0 monitor 100%
CPU1 monitor 100%
CPU2 monitor 100%
CPU3 monitor 100%
System bus monitor 100%
MESI coverage 100%
LRU coverage 100%

in the industry often spend weeks in analyzing uncovered portions of coverage. We plan

to execute this time consuming analysis of code coverage in collusion with a formal tool

called JasperGold Unreachable Coverage (JG UNR), which promises to simplify the ef-

64

fort. Our goal is to evaluate the applicability of JG UNR to our UVM framework. This

effort and its results are provided in Section 5.4.3.

Our functional coverage is in line with our pre-set goal of cent percent coverage. After

manually justified exclusions, code coverage for the DUV attained acceptable values. Our

regression suite consists of 22 test-cases each run for 100 random seeds. No failures were

observed over the last several executions of the suite. Based on our coverage values, pass

rate, bug rate, and bugs discovered, we conclude that we have successfully completed

verification of our MESI-cache implementation using a state-of-the-art UVM test-bench.

5.2 Formal Methods

Our foremost focus during initial stages of FPV was to ensure that cover points are

reached and typical behavior is observed. We went through several iterations to refine

the assumptions and covers. We manually verified waveforms for typical behaviors and

confirmed that the design is not trivially over-constrained. We repeated this analysis at

every complexity stage, whenever a change to constraints was committed. A sample cover

trace of a CPU write miss operation as seen on JasperGold is illustrated as Figure 5.3.

Figure 5.3: CPU write miss operation as a JG cover statement

65

We successfully defined assertions for all features, except the replacement algorithm,

as described in the specification. A complete list of proof targets is provided in Appendix

B.3. We examined properties relevant to the CPU-lv1, system bus interface, bounded live-

ness, MESI state transitions, coherence, memory consistency, and bug fixes. We obtained

full proof for the interfaces, MESI transitions and bug fixes with reduced design param-

eters. We captured the definitions of cache coherence and memory consistency, namely

the single-write, multiple-read invariant, and the data-value invariant, as end-to-end asser-

tions. These invariants were explained earlier in Chapter 1. Although, we only managed a

bounded proof on coherence assertions. The bound is sufficiently high for us to exude con-

fidence about the design. We can safely say that several corner-case bugs were eliminated,

and that the design is coherent and consistent.

Table 5.8: Property summary for uni-core FPV

Type Total Proven\Reached CEX\Unreachable Undetermined
Complexity Stage-1 (CS1)
Assumes 42 N/A N/A N/A
Cover Statements 130 130 0 0
Assertions 55 53 0 2
Complexity Stage-2 (CS2)
Assumes 43 N/A N/A N/A
Cover Statements 130 130 0 0
Assertions 56 54 0 2
Complexity Stage-3 (CS3)
Assumes 43 N/A N/A N/A
Cover Statements 130 130 0 0
Assertions 56 52 0 4

As stated earlier, FPV was carried out at two levels, namely uni-core and multi-core

modules, with stages of increasing complexity in each level. Summary of FPV proper-

66

Table 5.9: Assertion status for uni-core FPV

Type CS1 CS2 CS3
CPU-lv1 interface Proven Proven Proven
System bus interface Proven Proven Proven
Liveness Proven Proven Proven
MESI protocol Proven Proven Proven
Bug fixes Proven Proven Proven
Coherence and consistency Bounded Bounded Bounded

Table 5.10: Bounded proofs in uni-core FPV

Assertion Bound (CS1) CS2 CS3
Liveness (CPU read) Infinity Infinity Infinity
Liveness (CPU write) Infinity Infinity Infinity
Coherence (CPU read) Infinity 35 30
Coherence (LRU eviction) 45 44 41
Coherence (Snoop write-back) Infinity 33 30
Coherence (Snoop share) 35 32 30

ties for the uni-core verification level is presented as Table 5.8. The number of assertions

and assumptions change slightly between complexity stages as certain assumptions are

eliminated and some assertions are clubbed together. Results of the uni-core property ver-

ification is described in Table 5.9. We observe that interface, MESI and bug fix assertions

are fully proven in all complexity stages. Liveness is proven in stages CS1 and CS2, with

guarantee that every CPU operation is completed within 11 cycles. This proof is possi-

ble due to simplifying assumptions (in CS1 and CS2) that access and data on the system

bus is provided within a few clock cycles. In stage-3, we place realistic assumptions that

the system bus access is granted in a maximum of 45 clock cycles, and that data is pro-

vided on the bus in a maximum of 9 clock cycles. These assumptions are determined by

observing behavior in the multi-core FPV environment. In the worst case, when all other

67

level-1 caches perform eviction and write-back (each core takes 15 cycles), we obtain proc

grant of shared bus in 45 cycles. Due to changes in the assumptions, liveness assertions

are proven in CS3 to guarantee that CPU operations are completed in 61 clock cycles.

Complete proof gives us full confidence that the uni-core model demonstrates liveness

properties if access and data is provided on the system bus in a timely manner.

Bounds for the inconclusive properties in different complexity stages are listed in Table

5.10. Limits to the proof were obtained after running FPV for about 24 hours of machine

time. Two of the coherence assertions are fully proven for CS1. Due to limited computing

resources and time, we only manage a bounded proof for coherence properties in CS2 and

CS3. We predict that a full proof can be generated with additional computing resources

and time. Nevertheless, bounded proofs significantly increase confidence about the design.

Cover statements in our FPV describe typical behavior in traces with a length of about 10

clock cycles. Clearly, we notice that the bound on memory consistency is of the order of

4-5 transactions. Therefore, we conclude that our analysis is sound.

Assumptions to the uni-core module, were evaluated as assertions in the multi-core in-

stantiation environment. A summary of the properties and their results for the multi-core

module are presented as Tables 5.11 and 5.12 respectively. We successfully validated as-

sumptions to the cache module in the instantiation environment. A few of the assumptions

(8/40) from uni-core stage-3, which included long sequences, only obtained a bounded

proof. An example is the assumption that L1-cache obtains proc grant within 45 clock

cycles after asserting system bus request. A counter-example was not found even after

over 36 hours of formal analysis. Additionally, all the assumptions were verified using

exhaustive simulation in the UVM regression suite. Therefore, we can state with reason-

able confidence that the assumptions of uni-core FPV are valid. We also proved most

uni-core assertions in the multi-core model. We obtained bounded proofs for liveness, and

coherence assertions alone. A summary of bounded proofs is provided as Table 5.13. This

68

provides immense confidence about our proof environment.

Table 5.11: Property summary for multi-core FPV

Type Total Proven\Reached CEX\Unreachable Undetermined
Assumes 52 N/A N/A N/A
Cover Statements 216 216 0 0
Assertions 113 95 0 18

Table 5.12: Assertion status for multi-core FPV

Type Result
Arbiter behavior Proven
Coherence (Multi-core) Bounded proof
Uni-core assumptions Proven (32/40)
Uni-core assertions
CPU-lv1 interface Proven
System bus interface Proven
Liveness Bounded proof
MESI protocol Proven
Bug fixes Proven
Coherence (Unicore) Bounded proof

Progress of an FPV effort is generally observed by tracking property status, asser-

tion density, and trends in bug discovery [1]. An approximate illustration of our project

progress over time is captured in Figures 5.4. Progress in FPV, as is typical, is observed

in lumps towards the end of a complexity stage. A single bug fix can suddenly improve

proof completion status by a large margin.

The pseudo-LRU replacement algorithm, which is excluded from FPV, is challenging

to describe as properties due to the large state involved. Additionally, replacement is not

69

Table 5.13: Bounded proofs in multi-core FPV

Assertion Bound
Liveness (CPU read) 65
Liveness (CPU write) 65
Coherence (CPU read) 28
Coherence (LRU eviction) 49
Coherence (Snoop write-back) 28
Coherence (Snoop share) 24
Multi-core Coherence (CPU read) 23

Figure 5.4: FPV progress over time

as critical as coherence, consistency and liveness. It is acceptable to lose performance due

to a minor LRU bug, but the system would not function without coherence. Therefore, we

prescribe LRU property verification as future work. The biggest take-away from FPV is

high confidence about coherence, memory consistency and IO protocol of our cache im-

plementation. To the best of our knowledge, this is the first effort at full-proof verification

of a MESI-cache design at the RTL level, completed by leveraging parameterization.

70

5.2.1 Justification for Reduced Design Parameters

A prime factor, that enabled FPV of our cache at the RTL level, is design parameteriza-

tion. Property verification is impossible with the original design size due to the large state

space of a 256KB data cache. We proved properties by minimizing the design size. We

carefully chose a set of minimal parameters that do not restrict any obvious, interesting

behavior. A 7-bit address with 2-bit offset ensures that the address segregation module

is utilized completely. A 2-bit set index ensures that we have 4 sets in each of the L1

caches. Each set has 4 ways and the entire data cache has 16 lines each 4 bits wide. A

3-bit address tag guaranteed that there were unique tags to trigger replacements within the

set. An instruction address bound of 7’h1F ensured that interaction between instructions

and data space was possible. Four instances, which is the intention of the original design,

were used in the multi-core proof environment.

We understand that there is inherent risk in reducing design parameters. We could re-

strict interesting behavior that is possible only with the original configuration. In order to

tackle this risk, we cleverly selected a reduced configuration that does not limit any obvi-

ous scenarios. Despite a careful selection of the minimal configuration, we acknowledge

that parameterization can limit certain behavior in an unforeseen manner. Our intended

plan was to extend our proof to the original configuration by using theorem proving tech-

niques and induction. However, due to limited resources and time, we were not able to

execute proof within a theorem proving system. Although we cannot say with certainty

that the design is flawless, we have significantly high confidence about the implementation

as a result of proof in the reduced setting. We defer proof with a theorem prover as future

work.

71

5.2.2 Bugs Discovered

We identified and resolved a total of 14 design flaws using formal analysis. The high-

light of our FPV effort was complete resolution of the CPU-snoop contention issue, which

could not be fixed in the simulation framework. Short counter-example traces, which point

to the exact source of failure, simplified analysis and verification of bug fixes.

5.2.2.1 Absence of reset signal

An obvious limitation of the legacy design, which is the lack of a global reset, was

apparent immediately in FPV. Since the legacy design was not created with intent for syn-

thesis, initial blocks were used to instantiate state elements within the design. Simulation

did not raise red flags as registers were initialized either by basic CPU operations or by

initial blocks. Simulation does not treat unknown or high impedance values as potential

causes of failure. FPV, on the other hand, inherently performs lint checks as it requires

the input model to be synthesizable. Therefore, we identified the crucial need for a global

reset immediately in FPV. Although this is almost a trivial bug, it highlights the impor-

tance of RTL quality checks early in the design cycle. We resolved this bug by updating

the specification to include a global reset input.

5.2.2.2 Presence of in-out ports

The legacy design made use of several in-out ports within the interface. Most signals

like address, data, data_valid, bus_rd, etc. were driven by multiple entities. Although

drivers of these in-out signals are mutually exclusive, these signals are often driven to

high-impedance values. This can potentially lead to wrong interpretation when the design

is realized in silicon. A high-impedance generally manifests as the previous active value

due to capacitance. Therefore, in real life, a high-Z could incorrectly be observed as a

logic high value. Once again, this relatively trivial issue brings forward the importance of

72

lint checks which are inherent to FPV. We resolved this bug by updating the specification

to provide dedicated inputs and outputs.

5.2.2.3 Contention between CPU and snoop-side requests

The most critical bug identified is the contention issue between CPU and snoop-side

requests. This issue arises as the implementation attempts to service both CPU and snoop

operations at the same time. An abstract MESI model assumes that state transitions are

atomic, but in reality several transitions take multiple clock cycles. In case of conflicting

concurrent requests from the CPU and system bus, coherence is destroyed in our legacy

implementation.

Figure 5.5: Example of contention issue

A particular example of contention is depicted in Figure 5.5. Consider a level-1 uni-

73

Figure 5.6: JasperGold counter-example for contention issue

core cache module with a data block A1 present in modified state. Assume that in the

first clock cycle, our module receives a bus read request for A1. In order to process the

bus read request, the cache module obtains snoop access to the system bus and issues a

level-2 write back for A1. While the write-back is still in progress, it receives a CPU write

operation for A1 in clock cycle 5. Our implementation is tuned to service both CPU and

snoop in parallel. Therefore, A1 data value is updated to 0x00 and write done signal is

issued to the CPU. Clearly, the concept of coherence is violated.

JasperGold generated a counter-example depicting the above scenario, early in the FPV

process. An assertion defined for the system-bus interface dictated that data is unchanged

as long as level-2 write signal is enabled. JasperGold provided a counter-example violating

this property, to highlight the contention issue. In Figure 5.5, we notice that level-2 write-

back data changes from 0x02 to 0x00 in clock cycle 6. A waveform of the trace generated

in JasperGold is illustrated as Figure 5.6.

FPV demonstrated that several situations can lead to similar violations. Any two con-

flicting requests to the same data block can destroy coherence and consistency. We realized

that in order to resolve this concurrency bug, we must prioritize either the CPU operation

74

or the snoop request in case of a conflict. We attempted numerous solutions with varying

definitions of priority. Bugs described in Sections 5.2.2.4 and 5.2.2.5 are the results of

our experiments. Ease of debug and resolution in FPV is extraordinary when compared to

simulation. Often, we had no clue about the root cause of failures in simulation. It took

several days to analyze long, random regression results to identify corner-case issues. On

the other hand, FPV provided short traces which pointed to the exact cause of the failure.

It took only a few minutes to identify the flaw in our proposed solution to the concurrency

issue. Liveness properties combined with data stability assertions were most effective in

debug.

Table 5.14: Solution to concurrency issue: Priority when CPU request observed first

CPU Bus access required Snoop request Bus access granted Priority

Read
No (M,E,S) X N/A CPU

Yes(I)
X No Snoop
X Yes CPU

Write
No (M,E) X N/A CPU

Yes(S,I)
X No Snoop
X Yes CPU

Table 5.15: Solution to concurrency issue: Priority when snoop request observed first

Snoop CPU operation Priority
Bus read X Snoop
Bus read to modify X Snoop
Invalidate X Snoop

Finally, after substantial debug, we identified and proved a working fix within the FPV

environment. Our solution requires a significant change to the implementation. We define

75

two internal signal CPUFirst and SnoopFirst as flags generated for priority. CPUFirst in-

dicates that in case of conflict, CPU operation should be prioritized whereas snoop request

is halted. SnoopFirst indicates that snoop response must be given higher priority while

CPU operation is stalled. As a corollary, both flags are mutually exclusive.

Our solution is succinctly captured in Tables 5.14 and 5.15. Note that ’X’ in the tables

indicates don’t care. Consider the situation in which CPU operation is observed before

a conflicting request on the system bus, Table 5.14 describes this scenario. If conflicting

requests are observed in the same clock or snoop message is noticed first, Table 5.15 de-

fines the solution. Essentially, snoop requests are prioritized if observed first, as captured

in Table 5.15. CPU operations must be prioritized if they do not require system bus access

or if our cache module has already received grant of the shared bus. SV code to realize the

above solution is given below:

1 a s s i g n p r o c _ r e q = c o r e _ i f . cpu_rd | c o r e _ i f . cpu_wr ;
2 a s s i g n p r o c _ r e s p = c o r e _ i f . d a t a _ i n _ b u s _ c p u _ l v 1 | c o r e _ i f . cpu_wr_done ;
3 a s s i g n snoop_req = s b u s _ i f . bus_ rdx_snoop | s b u s _ i f . bus_ rd_snoop | s b u s _ i f .

i n v a l i d a t e _ s n o o p ;
4 a s s i g n s n o o p _ r e s p = s b u s _ i f . b u s _ l v 1 _ l v 2 _ r e q _ s n o o p | s b u s _ i f . o u t _ d a t a _ i n _ b u s _ l v 1 _ l v 2 |

s b u s _ i f . i n v a l i d a t i o n _ d o n e ;
5 a s s i g n c o n f l i c t = (p r o c _ r e q) && (snoop_req) && (‘SBUS_IF_ADDR == ‘CORE_IF_ADDR) ;
6
7 a s s i g n s n o o p _ f i r s t = snoop_req & ~ c p u _ f i r s t ;
8
9 always@ (posedge c o r e _ i f . c l k or posedge r s t) begin

10 i f (r s t)
11 c p u _ f i r s t <= 1 ’ b0 ;
12 e l s e begin
13 i f (p r o c _ r e s p)
14 c p u _ f i r s t <= 1 ’ b0 ;
15 e l s e i f (s b u s _ i f . b u s _ l v 1 _ l v 2 _ g n t _ p r o c & ~ snoop_req)
16 c p u _ f i r s t <= 1 ’ b1 ;
17 end
18 end

Although in retrospect, our solution to the concurrency issue seems simple at the ab-

stract level, it required significant engineering effort to be realized in RTL code.

5.2.2.4 Deadlock situation

An incorrect solution to the concurrency issue described in the Section 5.2.2.3 can eas-

ily result in deadlocks. An obvious deadlock is reached when priority flags are generated

76

merely on the basic of which request is observed first. Consider the case of a shared block

A1 in the L1-cache. Say it receives a CPU write in the first cycle, while awaiting grant to

the common bus, it receives a snoop invalidate request for block A1. Since our solution

chose to prioritize CPU operation and stall the snoop request, the system fails to make any

forward progress.

A complex deadlock situation is achieved when we attempted to solve the concurrency

issue by generating priority flags (CPUFirst and SnoopFirst) using blk_hit_proc, an in-

ternal signal. In this solution, CPU operation is given priority if signal blk_hit_proc is

generated before a conflicting snoop request is observed. Internal signal blk_hit_proc is

asserted when the block requested by the CPU results in a hit (obtained from bus or previ-

ously present in cache). This fix works for most scenarios except when both blk_hit_proc

and a conflicting snoop request arrive in the same clock cycle. If we chose to stall the

snoop request in this scenario, deadlock is achieved for specific CPU requests.

Figure 5.7: Example of deadlock

An example of this complex deadlock is illustrated in Figure 5.7. Consider a data

block A1, present in shared state. CPU issues a write operation on A1 in the first clock

cycle. System bus access is requested on the next clock, simultaneously an invalidate

request for A1 is received. Signal blk_hit_proc is asserted at the same time as the incoming

77

invalidate. Therefore, based on our solution, we halt processing of the snoop request and

prioritize the CPU write which resulted in a cache hit. Snoop request cannot proceed

without invalidation. CPU write will not complete before system bus access. Hence,

deadlock is achieved.

This complex deadlock showed up only after several days of regression analysis in the

simulation framework. FPV, on the other hand, highlighted the issue almost immediately.

Interestingly a plausible deadlock situation was discovered in FPV even after simulation-

based verification was assumed to be complete. Within the implementation, we forgot to

raise bus request even if CPU operation was stalled due to a conflict. Although extremely

improbable, this could lead to an endless chain in which snoop requests are continuously

given higher priority. We identified this issue in FPV and fixed generation of the bus

request signal.

5.2.2.5 Livelock situation

A livelock is a scenario in which there is constant activity in the system, but it fails

to make any overall progress. Consider the solution based on internal signal blk_hit_proc

as described in Section 5.2.2.4. The only change is that if snoop and block hit rise on the

same clock edge, snoop transactions are given priority while CPU operations are stalled.

An example of how this solution leads to deadlock is illustrated as Figure 5.8.

Consider a write request to data block A1 in the first clock cycle. Our uni-core cache

obtains bus access and receives A1 in exclusive state. In the same cycle that block hit

is generated, a bus_rdx request to A1 is observed. Since our policy dictates that CPU

operation is halted in such a scenario, we invalidate A1 and service the snoop request. As

the CPU write is still incomplete, we re-issue the bus request. Our cache module obtains

bus grant, and immediately generates bus_rdx request for A1. In such a manner, bus grant

and A1 is constantly exchanged between two requesting L1-caches, resulting in a livelock.

78

Figure 5.8: Example of livelock

Ultimately, we avoid deadlocks and livelocks by defining priority flags based on outputs

from the arbiter. Arbiter is the ultimate authority on resolution of conflicts in our system.

It is responsible for serializing operations, in effect defining the correct sequential order.

Our clean solution to the concurrency issue was described in Section 5.2.2.3.

5.2.2.6 Bus request without CPU operation

A cousin bug of the concurrency issue is that bus request is asserted even without an

active CPU operation. A counter-example from JasperGold is provided as Figure 5.9. A

conflicting snoop operation invalidates the cache block exactly in the same cycle in which

the CPU operation is serviced. As a result, there is a spurious bus request on the next

cycle. This bug is resolved with the fix for the concurrency issue.

79

Figure 5.9: Counter-example highlighting bus request without CPU operation

5.2.2.7 Signal cp_in_cache for incoming invalidate request

As a result of the concurrency fix, whenever a snoop request was halted due to conflict

and CPU first priority, signal cp_in_cache was asserted irrespective of the snoop request.

However, the specification dictates that cp_in_cache should be generated for bus_rd or

bus_rdx requests only. We observed incorrect behavior as a counter-example to one of the

system bus assertions.

5.2.2.8 Invalidation acknowledgment during CPU first priority

Initially, acknowledgment for an invalidate request is asserted immediately if the block

is not present in cache. We assumed that this behavior would not be affected by the con-

currency fix. However, we later realized through FPV that invalidation done signal should

be halted if there is a conflict. This is another side effect bug of the incomplete concur-

rency fix. In this case, priority flags are generated correctly, but they are not fully utilized

to prevent incorrect behavior.

5.2.2.9 De-assertion of CPU first priority

The concurrency fix suggested in Section 5.2.2.3, dictates that priority flag CPUFirst

is de-asserted when a response is provided to the CPU. Our implementation was made in

the data cache functionality. We incorrectly ignored a response from instruction cache.

Consider the following situation: an instruction read obtains bus grant, which asserts the

80

CPUFirst signal, but completion of the read request does not de-assert CPUFirst. As a

result, the next data operation is incorrectly given higher priority than an incoming snoop

request, which leads to severe failures. This error is fixed by taking into consideration

response from the instruction cache as well.

5.2.2.10 Incorrect next-state logic in MESI FSM

Combinational logic to determine next-state function, within the MESI finite state ma-

chine, was realized incorrectly in the legacy design. It made the assumption that a snoop-

side invalidate request is impossible for a cache block existing in modified/exclusive state.

Uni-core FPV pointed out the existence of this flaw. We resolved this issue by supporting

invalidate requests for modified and shared data blocks.

5.2.2.11 LRU state implemented as latches

The LRU state for each cache set was implemented as a latch. Latches can cause issues

in a design based on a clock. FPV, which also performs a lint check on the RTL, pointed

out the presence of latch inference, early in the verification process. We resolved this bug

by recoding the RTL.

5.2.2.12 De-assertion of signal data_in_bus_cpu_lv1

Level-1 cache response to a CPU read operation is through the signal data_in_bus_cpu_lv1.

In the legacy design, this output remains high for one additional clock cycle after CPU read

request is de-asserted. As a result, in case of consecutive read and write requests, output

data_in_bus_cpu_lv1 is high when a CPU write operation is in progress. This is undesir-

able and can lead to confusion in the core. We eliminate this possibility by a logical AND

operation with CPU read request.

81

5.2.2.13 De-assertion of signal cpu_wr_done

Level-1 cache responds to a CPU write operation with cpu_wr_done to signal that the

write is successfully completed. Similar to the previous bug, cpu_wr_done remained high

during a CPU read operation. This is avoided by simply performing a logical AND with

the write request.

5.2.2.14 Multiple drivers for lv2_wr_done

Multi-core FPV identified the presence of multiple drivers for the lv2_wr_done signal.

In the implementation, this port is declared as an output of the multiplexer block within

the multi-core module. However, it is also driven by independent glue logic within the

module. This is another example of a lint error spotted by JasperGold.

5.2.3 Coverage

FPV tools including JapserGold provide coverage metrics to track the percentage of

logic covered as properties. Although these measures are not as robust as coverage in the

simulation framework, it provides a rough idea of verification progress. Coverage in FPV

is primarily based on the logic that falls within the cone of influence of defined assertions.

Occasionally, additional logic might be considered part of an assertion’s logic cone even

without a significantly direct impact. Therefore, these metrics should be treated as a rough

estimate rather than the sign-off criteria. We provide our line and signal coverage numbers

in Table 5.16. Since we haven’t defined assertions for LRU functionality, a slight dip in

coverage is expected.

Table 5.16: Coverage metrics for FPV

Type Line Coverage Signal Coverage
Uni-core module 97.08% 88.42%
Multi-core environment 96.65% 73.10%

82

5.2.4 Formal as Design Aid

Formal techniques are handy tools in the hands of design engineers as well. We en-

countered numerous applications of formal analysis specific to RTL design during our

verification process. We outline these usage scenarios in this section. Table 5.17 provides

details of our minimized configuration, to help appreciate the design size and complex-

ity feasible for formal analysis. Our FPV exercise demonstrates that formal methods are

effective for complex, real-life designs with suitable parameterization.

Table 5.17: Design size for our FPV

Type PI PO State elements Property flop bits
Uni-core module 39 29 1117 748
Multi-core environment 68 46 2926 1228

Scenarios for the use of formal technology as design aid, exercised in our study, are

listed below:

1. Automatic lint check

FPV tools including JasperGold inherently perform a lint check of the RTL for syn-

thesis. With reference to our study, FPV highlighted quality issues like the absence

of reset, presence of in-out ports, and latch inference. Usually these issues are identi-

fied by a lint tool later during the synthesis stage. A quality lint check in the form of

FPV, at an early design stage is helpful. JasperGold provides a specific application

called Automatic Formal Lint (AFL), which specializes in RTL quality checks.

2. Legacy design understanding

Design implementations are usually passed through teams and engineers across sev-

eral years. Ownership is often transferred to new designers, who have no clue about

83

the previous design. Sufficient documentation to understand the implementation is

often absent. This is similar to how we obtained a legacy implementation of the

cache controller. Formal property verification is extremely useful in such scenarios.

Cover statements and simple properties serve as an instant test-bench. We are able

to generate interesting behavior with minimal effort. A prime advantage in FPV is

that we are required to merely specify the destination, the tool figures out the short-

est path to achieve that state. This is in stark contrast from simulation, where every

step of the journey must be explicitly defined. With reference to our project, say we

wish to observe behavior when a write operation is performed on a shared block, we

simply specify a cover statement.

3. Design exercise FPV

Designers can use FPV to bring up an instant test-bench with minimal effort. Typical

behavior can be analyzed without spending significant time on the development of

UVM components. It is acceptable to over-constrain the design in such an exercise,

as robust verification will be performed later. With simplified assumptions, early

design flaws can be weeded out before release to the verification team.

4. Validation of bug fixes

Major design updates, like the concurrency fix in our project, often lead to numerous

additional bugs as a side effect. If we can define the micro-architectural update as

properties, a clean implementation can be obtained with few iterations in FPV. We

come to this conclusion based on our experience with the concurrency fix. Addi-

tional holes within the implementation were identified immediately with assertions

that represented the update at an abstract level.

5. Formal equivalence verification for RTL

FEV is a powerful technique to guarantee that functionality is preserved with design

84

changes like parameterization, de-feature bits, clock gating, and timing fixes. FEV

is often faster than performing a complete FPV execution on the new design. When

such changes are made late in the design process, FEV can quickly provide confi-

dence that functionality is preserved. We utilized FEV to verify parameterization

of the number of cores. We performed combinational equivalence between the old

implementation and the parameterized model with default configuration.

6. Performance verification

Property verification can guarantee performance bounds for a given design if com-

plexity is manageable. In our study, we fixed the latency for liveness properties.

Under specific assumptions on level-2 performance, we could ensure that a CPU

operation is serviced within a fixed number of clock cycles. We first start with the

least latency value, and analyze the counter-example to evaluate if behavior is valid.

In complexity stage-2 of our uni-core FPV, we proved that both CPU read and write

is serviced within 11 clock cycles, based on the assumption that shared bus access is

granted immediately. If the scenario is acceptable, we increase the latency bound in

the property. Otherwise, we fix the RTL to ensure performance requirement is met.

5.3 Comparison between Formal and Simulation

In this section, we offer an elaborate comparison between our FPV and simulation

efforts. We comment about the ease of debug, bug discovery, trace length, required exper-

tise and corner case errors in each approach. It is fairly clear that both technologies have

their own advantages and limitations. Neither formal not simulation can fully replace the

alternative approach, at least with the current tool capabilities.

Table 5.18 briefly summarizes a general analysis of simulation and formal techniques.

The 3 pillars which form the focus of simulation-based verification are stimulus, checkers

and coverage. Formal analysis is centered around defining properties and controlling state

85

Table 5.18: Generic analysis of formal vs simulation

Simulation framework Formal verification
Focus Random stimulus

Functional coverage
Checkers

Properties
State space exploration

Challenges Corner cases
Time to build infrastructure
Debug

Data transformation blocks
Property definition
Complexity (state space)

Typical trace length Large Short
Ease of debug Medium Easy
Expertise required Low Medium
Time to first bug 2-3 weeks 1-2 days
Complex bugs Hit after several regres-

sions
Easy analysis of concurrency,
deadlock , and livelock

space. Therefore, both techniques require a fundamentally different perspective. Simula-

tion excels in large designs like system-on-a-chip(SoC) implementation. SoC level ver-

ification is impossible using formal techniques due to the immense state space problem.

Nevertheless, simulation is deficient in the analysis of corner cases, it fails to exhaustively

verify the design. Formal techniques are suited to rigorously verify control blocks and

data transport modules, by highlighting subtle corner case issues [40]. It is challenging to

formally verify data transformation blocks which operate on huge chunks of data, due to

complexity. Formal analysis is challenging to apply in verification of packet-based pro-

tocols. But with techniques like parameterized hardware design, we believe that formal

verification of large packet based protocols can be made feasible.

Within the simulation framework, verification cannot begin until the necessary infras-

tructure is substantially developed [24]. This includes checkers, drivers, monitors and

coverage collectors. As a result, it takes several weeks even for a basic investigation of

the design. Simulation traces are generally long, making debug challenging as compared

to formal. It is common for an error to show up several thousand cycles after the primary

86

source of bug. Engineers manually trace back several transactions to identify plausible

causes of failure. Additionally, complex issues like concurrency, deadlocks and livelocks

are hard to reason about in simulation [41]. Identification of complex issues relies on re-

gressions with pseudo-random stimulus. Despite the drawbacks, simulation is the de-facto

standard in the industry due to the limited expertise requirement.

Formal methods, on the other hand, are capable of creating instant test-benches. We

can perform verification of typical behavior as soon as the design is available. There-

fore, formal techniques can identify erroneous behavior almost immediately. It is easy to

understand and debug complex issues like concurrency and deadlock. This is evident in

our study, contention between the CPU and snoop was identified in simulation, but de-

bug and resolution was impossible due to long random traces. Analysis of concurrency

was extremely simple within FPV as it provided short traces pin-pointing the exact cause

of failure. Therefore, debug is significantly simpler in formal. Nevertheless, engineers

require additional training and expertise before successful application of formal methods.

Seligman et al. assert that formal verification provides a greater return on investment

(ROI) as compared to simulation in terms of engineering and machine costs [1]. An in-

crease in ROI of about 2-9x was observed for formal analysis of real designs at Intel. We

compare results from the UVM framework and FPV in Table 5.19. Approximately ten

weeks of focused engineering effort was spent on simulation, while about 8 weeks were

dedicated to FPV. Our study is inherently disadvantageous to FPV as the formal effort

succeeded the simulation exercise. Formal verification provides maximum benefits when

introduced early in the design process [1]. Although earlier FV was suitable only with

mature RTL due to the long analysis time, FV tools in their recent capacity provide max-

imum benefits early in the design process. In spite of the clear disadvantage, we observe

that FPV provides better ROI in all aspects of comparison. The number of bugs discov-

ered in either approach is comparable. However, the quality of bugs identified in FPV is

87

Table 5.19: Comparison of results from formal vs simulation

UVM FPV FV advantage
Engineering effort 10 weeks 8 weeks -
Bugs discovered 13 14 1.07x
Bugs (%) 48% 52% -
Bugs/Eng effort 1.3 1.75 1.35x
Simple bugs 8 7 -
Complex bugs 5 4 -
FV quality bugs 0 3 -
Scaled bugs 8*1 + 5*2 = 18 7*1 + 4*2 + 3*4 = 27 1.5x
Scaled bugs/Eng effort 1.8 3.375 1.875x
Time to deploy 21 days 2 days 10.5x
Typical trace length 40000 cycles 6-40 cycles 100x
Typical execution time 3 hours 1 hour 3x
Time to concurrency issue 6 weeks 2 weeks 3x
Debug of complex bugs 1-3 days 1-2 hours 24x

significantly higher. If we assign weights based on complexity, FPV ROI is about 1.875x

that of simulation in terms of engineering effort. The significance of FPV is supported by

the fact that resolution of the concurrency issue was infeasible in simulation. The biggest

advantages of FPV are ease of debug and short counter-examples. They enabled imple-

mentation of an easy, clean fix for the contention bug. Debug time is reduced by about 20x

while trace length is shortened by a factor of hundred.

Despite its obvious advantages, formal analysis is limited by design complexity and

quality of properties. A feature of the DUV, which is not captured as a property cannot

be verified in FV. Often, it is challenging to describe certain features as properties without

adding significant state space. In our study, we excluded verification of LRU functionality

in FPV due to the number of state elements required. FPV can only verify behavior that

is explicitly specified. Contrastingly, pseudo-random simulation can fortuitously identify

faulty behavior which is not explicitly specified as well.

88

5.4 Collaboration between Formal and Simulation

It is fairly obvious that neither formal nor simulation can completely replace the al-

ternative approach. Both techniques have their own unique advantages and deficiencies.

During the course of our study, we identified opportunities for successful collaboration be-

tween formal and simulation. We believe that both approaches can co-exist to supplement

each other, in a productive manner without compromising engineering effort. There are

several opportunities for a mutually beneficial arrangement. In this section, we describe

specific events in our study where we leveraged formal techniques within simulation and

vice-versa. We implore the use of formal methods as an integral part of the design process.

It essentially serves as a new form of interacting with the RTL.

5.4.1 Validating FPV Assumptions in Simulation

Assumptions form the basis of proof in a formal environment. It is crucial to verify the

set of constraints used to generate proof. This is achieved in three methods, namely argu-

ments supported by evidence in the specification, proving assumptions in the instantiation

environment, and extensive simulation. In our study, we attempted to prove assumptions

in the multi-core environment in addition to validating them in simulation. We observed

that it is relatively easier to verify assumptions in a extensive regression suite. All assump-

tions used in uni-core FPV passed as assertions in our UVM regression suite. Proof in the

instantiation environment is not always feasible due to complexity of the environment. In

such a situation, simulation-based verification at a higher level of hierarchy can be used to

gain confidence about assumptions used in FPV at the module level.

5.4.2 Bug-hunting FPV

In case of a risky design feature, bug hunting FPV can be performed on the critical

function in addition to simulation-based verification on the entire module. Bug hunting

89

exercise is simpler compared to full-proof verification. Complexity is easier to handle

as properties are focused only on a portion of the logic. Additionally, we could black-

box irrelevant parts of the design. In our study, a bug hunting exercise centered around

coherence would yield good results when performed in addition to the UVM framework.

Our full-proof verification effort, which subsumes a bug hunting exercise, discovered 12

bugs not previously identified in the UVM environment.

5.4.3 Improving Simulation Code Coverage

Hundred percent code coverage is a significant sign-off criteria for the design. En-

gineers spend weeks analyzing uncovered portions of the RTL code. Formal analysis

can significantly speed up this process by determining unreachable portions of RTL [1].

JapserGold provides a application called UNR for this purpose. Our raw code coverage

metrics from simulation were presented earlier in Table 5.5. UNR provides a list of un-

reachable points, which we can categorize as either waive or fix. Greater confidence is

achieved when items are excluded after formal analysis has determined un-reachability.

We witnessed an improvement of about 0.5% to 2% without any significant effort on JG

UNR. These unreachable points were determined without any initialization or environ-

mental constraints. With sufficient input constraints, we believe that significant coverage

holes can be identified easily using JG UNR.

5.4.4 Additional Opportunities

A non-exhaustive list of additional possibilities is given below:

• Connectivity verification at SoC level [33]

• Control register verification

• Post-silicon debug [34]

• Security verification using information flow tracking [42]

90

6. CONCLUSIONS

In summary, we successfully utilized formal property verification to gain immense

confidence about our MESI-based cache implementation in SystemVerilog. We demon-

strate that formal verification of cache controllers is feasible at the RTL level with suitable

parameterization. We performed full-proof verification of features, except LRU operation,

for our design in a reduced configuration. Although the minimized configuration does not

explicitly restrict any interesting behavior, we defer a formal proof of the original size de-

sign using theorem proving techniques as future work. We successfully defined interface-

level assertions for high level properties like coherence and memory consistency. Two

invariants, which constitute coherence in a shared memory system, namely the SWMR

and DV invariants are described as end-to-end assertions in SystemVerilog. Additionally,

we verified functionality of the communication infrastructure and protocol adherence of

the input-output interface using SystemVerilog assertions.

We provide an elaborate comparison between a state-of-the-art UVM environment and

FPV. We utilized de-facto industry approaches like pseudo-random stimulus, metric-driven

verification, and IP methodology, to develop a rigorous, parameterized, simulation frame-

work. We identified a total of 13 bugs using the UVM test-bench. However, it was ex-

tremely challenging to reason about complex issues like concurrency, deadlock and live-

lock. Large failure traces, with a run-time of several thousand cycles, rendered debug of

complex issues inefficient and infeasible. Corner case errors were identified predominantly

using random regressions, which required time-consuming analysis in order to identify the

source of failure.

Formal property verification identified a total of 14 design flaws, out of which 3 are

FV quality bugs that would be improbable to identify in random regressions. Despite the

91

fact that FPV succeeded the UVM effort, FPV recognized a comparable number of design

flaws, unresolved in the simulation environment. The three FV quality bugs are described

in Sections 5.2.2.4, 5.2.2.5, and 5.2.2.8. We identified and resolved a critical concurrency

issue with the potential to destroy notions of coherence and consistency in our system.

This complex issue was the result of simultaneous, conflicting CPU and snoop-side re-

quests. Issues of deadlock and live-lock, which arose as a result of attempted fixes to the

concurrency bug, were resolved in FPV with minimal effort. In line with previous obser-

vations made by Seligman et al. [1], we note that FV offers a higher return on investment

in terms of engineering effort. A quick comparison of results, yields an FPV advantage

of 1.875x. FPV using parameterization enabled quick convergence of our design imple-

mentation. We conclude that it is substantially simpler to understand and resolve complex

issues like concurrency in a formal environment.

Formal and simulation are often incorrectly viewed as disparate, independent technolo-

gies. We note that there are numerous opportunities for successful collaboration between

the two approaches. Formal methods can complement simulation with specialized applica-

tion in connectivity, bug-hunting, register verification, linting, coverage improvement and

security among numerous possibilities. In our study, we demonstrated the use of formal as

coverage improvement and bug-hunting tools. Alternatively, the assumptions in a formal

environment can be verified using extensive simulation at a higher level of design hierar-

chy. Training designers and regular verification engineers in ABV is immensely beneficial

for the design process. FV is useful throughout the design process, popular use cases

include: design-exercise FPV, bug-hunting FPV, post-silicon debug, connectivity verifica-

tion, clock gating validation, RTL-netlist FEV, control register verification, and coverage

improvement. However, they are not limited to these specific usage models at particular

stages of the design cycle. Formal techniques serve as a generic tool-kit rather offering

new methods to interact with the RTL.

92

We offer the following generic guidelines, based on our experience with formal verifi-

cation, to maximize productivity in digital design.

1. Apply FV early

FV methods provide significant advantages when applied early in the design cycle.

Lightweight usage models like design-exercise FPV can even apply to large and

complex designs by focusing on specific behavior. FV provides an instant test-bench

to observe typical behavior without significant effort.

2. Parameterize the implementation

Identify opportunities to parameterize the design at every stage. Parameterization

can reduce serious complexity making it feasible for FV.

3. Design as components tangible for FV

This is part of a greater envisioned plan for formally verified libraries. If modules

are designed in sizes that permit FV, components can be rigorously verified using

FV methods while simulation could serve the verification need at a higher level.

4. Specific application of FV

In cases where full scale application is infeasible, we suggest identifying specific

opportunities where Fv can provide better returns. Particular examples are con-

nectivity, control register, security verification, post-silicon debug and coverage im-

provement.

5. Bug-hunting FPV

In case of a critical feature, bug-hunting FPV can be performed to improve confi-

dence about the design.

6. FEV for design changes

FEV is useful in verifying design updates like parameterization, clock gating, and

93

timing fixes. FEV effort in such cases is more robust when compared to simulation

regressions. It is often easier than a full-fledged FPV exercise as well.

6.1 Future Work

We enumerate opportunities to extend current work below:

1. Formal proof of coherence in original design configuration

In this study, we gained confidence of coherence and a sound communication in-

frastructure for a minimized configuration of the design. It would be interesting to

extend our proof to the general setting with theorem proving techniques.

2. Transactional equivalence between reference model and RTL

In our UVM environment, we developed a transaction-accurate reference model of

our design. An equivalence check between the transaction-level model and RTL

would evaluate the applicability of FEV tools for such a use case.

3. Formal verification of complex caches

Our study demonstrated the feasibility of FPV for a base-line MESI implementation

with a blocking, shared bus. Modern cache implementations are aggressively opti-

mized for performance with features like split-transactions, and write-buffers. The

communication infrastructure in a shared memory system is constantly evolving.

Bus architecture is replaced with NoC topologies like 2D mesh, or torus. Addition-

ally, recent concepts like hardware transactional memory further introduce complex-

ity to caches [43]. We suggest extension of our analysis to more complex designs.

4. Security verification of caches

Cache side-channel and timing attacks severely compromise hardware security. Cryp-

tographic algorithms like AES and RSA were violated by an unprivileged user pro-

gram based on timing information from cache misses [44]. We propose verification

94

of security aware caches including partition-locked cache (PL cache) using formal

techniques. Specifically, SecVerilog enables security verification at the hardware

level by annotating SystemVerilog code with information flow tracking labels [42].

Analysis of formal approaches for security verification can further strengthen the

practical usage portfolio of FV.

95

REFERENCES

[1] E. Seligman, T. Schubert, and M. V. A. K. Kumar, Formal Verification: An Essen-

tial Toolkit for Modern VLSI Design. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 2015.

[2] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory Consistency and

Cache Coherence. Morgan & Claypool Publishers, 1st ed., 2011.

[3] M. M. K. Martin, “Formal verification and its impact on the snooping versus di-

rectory protocol debate,” in 2005 International Conference on Computer Design,

pp. 543–549, Oct 2005.

[4] D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture: A Hardware/-

Software Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

1998.

[5] N. Dave, M. C. Ng, and Arvind, “Automatic synthesis of cache-coherence protocol

processors using bluespec,” in Proceedings of the 2Nd ACM/IEEE International Con-

ference on Formal Methods and Models for Co-Design, MEMOCODE ’05, (Wash-

ington, DC, USA), pp. 25–34, IEEE Computer Society, 2005.

[6] D. Vantrease, M. H. Lipasti, and N. Binkert, “Atomic coherence: Leveraging

nanophotonics to build race-free cache coherence protocols,” in 2011 IEEE 17th In-

ternational Symposium on High Performance Computer Architecture, pp. 132–143,

Feb 2011.

[7] V. Nagarajan, “Lecture 5: Snooping coherence protocol,” 2017.

[8] Intel, Intel Core2 Extreme Processor X6800 and Intel Core2 Duo Desktop Processor

E6000 and E4000 Sequence.

96

[9] F. Verbeek, P. M. Yaghini, A. Eghbal, and N. Bagherzadeh, “Deadlock verification

of cache coherence protocols and communication fabrics,” IEEE Transactions on

Computers, vol. 66, pp. 272–284, Feb 2017.

[10] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and

L. A. Ness, “Verification of the futurebus+ cache coherence protocol,” Formal Meth-

ods in System Design, vol. 6, no. 2, pp. 217–232, 1995.

[11] F. Pong, M. Browne, A. Nowatzyk, and M. Dubois, “Design verification of the s3.mp

cache-coherent shared-memory system,” IEEE Transactions on Computers, vol. 47,

pp. 135–140, Jan 1998.

[12] F. Pong and M. Dubois, “Verification techniques for cache coherence protocols,”

ACM Comput. Surv., vol. 29, pp. 82–126, Mar. 1997.

[13] G. Delzanno, Automatic Verification of Parameterized Cache Coherence Protocols,

pp. 53–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

[14] C.-T. Chou, P. K. Mannava, and S. Park, A Simple Method for Parameterized Veri-

fication of Cache Coherence Protocols, pp. 382–398. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2004.

[15] J. Bingham, J. Erickson, G. Singh, and F. Andersen, “Industrial strength refinement

checking,” in 2009 Formal Methods in Computer-Aided Design, pp. 180–183, Nov

2009.

[16] E. A. Emerson and V. Kahlon, Exact and Efficient Verification of Parameterized

Cache Coherence Protocols, pp. 247–262. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2003.

[17] Y. Li, K. Duan, Y. Lv, J. Pang, and S. Cai, “A novel approach to parameterized veri-

fication of cache coherence protocols,” in 2016 IEEE 34th International Conference

97

on Computer Design (ICCD), pp. 560–567, Oct 2016.

[18] R. Komuravelli, “Verification and performance of the denovo cache coherence pro-

tocol,” 2010. Master’s thesis at the University of Illinois at Urbana Champaign.

[19] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S.

Adve, N. P. Carter, and C.-T. Chou, “Denovo: Rethinking the memory hierarchy

for disciplined parallelism,” in Proceedings of the 2011 International Conference on

Parallel Architectures and Compilation Techniques, PACT ’11, (Washington, DC,

USA), pp. 155–166, IEEE Computer Society, 2011.

[20] J. F. Cantin, M. H. Lipasti, and J. E. Smith, Dynamic Verification of Cache Coherence

Protocols, pp. 25–42. New York, NY: Springer New York, 2004.

[21] A. DeOrio, A. Bauserman, and V. Bertacco, “Post-silicon verification for cache co-

herence,” in 2008 IEEE International Conference on Computer Design, pp. 348–355,

Oct 2008.

[22] A. DeOrio, I. Wagner, and V. Bertacco, “Dacota: Post-silicon validation of the mem-

ory subsystem in multi-core designs,” in 2009 IEEE 15th International Symposium

on High Performance Computer Architecture, pp. 405–416, Feb 2009.

[23] Cadence, “Modeling and verifying cache-coherent protocols, vip, and designs.”

White paper by Cadence.

[24] C. Spear, SystemVerilog for Verification, Second Edition: A Guide to Learning the

Testbench Language Features. Springer Publishing Company, Incorporated, 2nd ed.,

2008.

[25] R. Salemi, The UVM primer. Boston Light Press, 2013.

98

[26] H. Zhaohui, A. Pierres, H. Shiqing, C. Fang, P. Royannez, E. P. See, and Y. L. Hoon,

“Practical and efficient soc verification flow by reusing ip testcase and testbench,” in

2012 International SoC Design Conference (ISOCC), pp. 175–178, Nov 2012.

[27] S. Vijayaraghavan and M. Ramanathan, A practical guide for SystemVerilog asser-

tions. Springer Science & Business Media, 2005.

[28] M. Graphics, “Verification academy,” UVM Cookbook. Mentor Graphics, pp. 1–569,

2012.

[29] Cadence, “SystemVerilog advanced verification using UVM,” 2012.

[30] U. V. M. Accellera, “1.1 users guide,” 2011.

[31] E. Cerny, S. Dudani, J. Havlicek, and D. Korchemny, SVA: The Power of Assertions

in SystemVerilog. Springer Publishing Company, Incorporated, 2nd ed., 2014.

[32] R. K. Ranjan, C. Coelho, and S. Skalberg, “Beyond verification: Leveraging formal

for debugging,” in 2009 46th ACM/IEEE Design Automation Conference, pp. 648–

651, July 2009.

[33] S. K. Roy, “Top level soc interconnectivity verification using formal techniques,”

in 2007 Eighth International Workshop on Microprocessor Test and Verification,

pp. 63–70, Dec 2007.

[34] S. Ray and W. A. Hunt, “Connecting pre-silicon and post-silicon verification,” in

2009 Formal Methods in Computer-Aided Design, pp. 160–163, Nov 2009.

[35] V. Kottapalli and F. Andersen, “Formal property verification of a MESI-based cache

implementation,” 2017. Poster presented at IEEE Texas Workshop on Integrated

System Exploration.

[36] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Improvements to com-

binational equivalence checking,” in Proceedings of the 2006 IEEE/ACM Interna-

99

tional Conference on Computer-aided Design, ICCAD ’06, (New York, NY, USA),

pp. 836–843, ACM, 2006.

[37] A. Koelbl, Y. Lu, and A. Mathur, “Embedded tutorial: formal equivalence check-

ing between system-level models and rtl,” in ICCAD-2005. IEEE/ACM International

Conference on Computer-Aided Design, 2005., pp. 965–971, Nov 2005.

[38] P. Chauhan, D. Goyal, G. Hasteer, A. Mathur, and N. Sharma, “Non-cycle-accurate

sequential equivalence checking,” in 2009 46th ACM/IEEE Design Automation Con-

ference, pp. 460–465, July 2009.

[39] M. V. A. K. Kumar, A. Gupta, and S. S. Bindumadhava, “RTL2RTL formal equiv-

alence: Boosting the design confidence,” in Proceedings 2nd French Singaporean

Workshop on Formal Methods and Applications, FSFMA 2014, Singapore, 13th May

2014., pp. 29–44, 2014.

[40] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav, A. Slo-

bodová, C. Taylor, V. Frolov, E. Reeber, and A. Naik, Replacing Testing with Formal

Verification in Intel CoreTM i7 Processor Execution Engine Validation, pp. 414–429.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

[41] S. Tasiran, Y. Yu, and B. Batson, “Linking simulation with formal verification at a

higher level,” IEEE Design Test of Computers, vol. 21, pp. 472–482, Nov 2004.

[42] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design language

for timing-sensitive information-flow security,” in Proceedings of the Twentieth In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’15, (New York, NY, USA), pp. 503–516, ACM, 2015.

[43] V. Kottapalli and S. Khatri, “A practical methodology to validate the statistical be-

havior of bloom filters,” in 2016 International Conference on Hardware/Software

100

Codesign and System Synthesis (CODES+ISSS), pp. 1–8, Oct 2016.

[44] Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-based

side channel attacks,” in Proceedings of the 34th Annual International Symposium

on Computer Architecture, ISCA ’07, (New York, NY, USA), pp. 494–505, ACM,

2007.

101

APPENDIX A

SPECIFICATION

This chapter describes the high-level specification of our design. The environment

consists of a configurable N-core system with private L-1 cache for each core, an atomic

snooping bus for communication between caches, an arbiter to determine bus access, and

communication between LLC and main memory. A block diagram of the system is il-

lustrated in Figure A.1. The design (DUV) encompasses the multi-core L1 cache alone.

However, we include the level-2 cache and arbiter behavior for completeness. A key aspect

to remember is that the specification provided here is the latest version. We began with a

simple toy specification, which evolved into a full-fledged architectural definition through

the design and verification process. Several changes to the implementation like addition

of reset, removal of input-output ports, performance upgrades, etc resulted in refinements

to the specification as well.

We focus primarily on the functional aspects of the L1 cache, and avoid severe perfor-

mance optimizations. Operations on the CPU-L1 interface are blocking, implying that the

core must keep the request asserted until it gets a response from the cache. Similarly, the

common system bus is also atomic and blocking. As a result, at any instant, a maximum

of one request is pending on the system bus.

Salient features of our system are:

• Parameterized implementation

• Private L1 cache and shared L2 cache

• Separate data and instruction cache in level-1; Unified level-2 cache

102

Figure A.1: Block diagram of the complete system

• 4-way associative L1 cache and 8-way L2 cache

• Physically indexed physically tagged (PIPT) cache system; No translation look-

aside buffer (TLB) needed

• Inclusive cache

• MESI-based coherence protocol

• Pseudo-LRU replacement policy

• Write-back and write-allocate schemes

• No write buffers

Our implementation is parameterized to support re-use, modularity, and formal analy-

sis. A list of configurable elements is provided below:

1. Data width: determines the data bus width, and size of each cache block

103

2. Address width: determines the address space and address bus width

3. Number of index bits: defines the number of sets within the cache, subsequently

controlling size of the data and instruction L1 cache

4. Tag width: determines address tag bits for each cache line

5. Number of cores: controls the number of CPUs within the system

6. Instruction address bound: defines division of address space between data and

instructions

Figure A.2: Relation between address, tag, index and offset

Address bits are broken down to represent set index, offset and tag as shown in Figure

A.2. Both data and instructions are byte-addressable. An important point to note is that

there are certain limitations to the permitted configurations. Firstly, all the parameters are

expected to be non-zero. Data width must be a power of two. The sum of offset bit-width

index bit-width and tag size should be equal to the address width. Number of cores is

always greater than or equal to one. Lastly, instruction bound must be lower than the

maximum possible address.

104

A.1 Algorithm Description

A.1.1 Replacement Policy

The level-1 cache follows a pseudo-Least Recently Used(PLRU) algorithm when the

cache set is full. Each set within the cache has a 3-bit LRU state variable. In the absence

of a free block, the LRU state dictates which line is replaced. This relation is depicted in

Table A.1, ’x’ indicates ’don’t care’. Additionally, every access to cache updates the state

as shown in Table A.2, ’-’ indicates that the bit is unchanged.

Table A.1: Pseudo-LRU replacement policy

State Replacement
00x Line 0
01x Line 1
1x0 Line 2
1x1 Line 3

Table A.2: Pseudo-LRU state update

Access Next state
Line 0 11-
Line 1 10-
Line 2 0-1
Line 3 0-0

A.1.2 MESI Protocol

Each cache line has its own MESI state which is either Modified (M), Exclusive (E),

Shared (S), or Invalid (I). The state diagram for the protocol is illustrated as Figure A.3.

105

Transitions to the left of states, represent processor side requests and the subsequent con-

troller action on the shared bus. More precisely, cpu rd(read) and cpu wr(write) are re-

quests from the core; bus rdx(read with intent to modify), bus rd(read-only), and invali-

date are requests broadcast on the shared system bus. State transitions to the right, signify

incoming bus requests and corresponding responses. Each transition in the state diagram

has two components i.e. x/y. Here ’x’ signifies the incoming request either from the core

or another L-1 cache, and ’y’ indicates the required action/message on the bus.

Figure A.3: MESI coherence protocol

A.2 Design Hierarchy

The multi-core L1 cache module houses a configurable number of uni-core cache

blocks as shown in Figure A.4. It interacts with the CPU cores, arbiter and L2 cache.

106

It houses an multiplexer block which is necessary to avoid input-output signals. The mul-

tiplexer serves as the interconnect, routing signals based on the arbiter outputs. It selects

the address, bus request and related signals based on processor grant. Likewise, the bus

response is routed based on snoop grant signal from the arbiter. Each uni-core cache mod-

ule has a separate instruction cache and data cache. A coherence protocol is unnecessary

for instructions based on the assumption that cores do not write to an instruction address.

Similarly, a write operation to I-cache is expected to be unacknowledged.

Figure A.4: Multi-core L1 cache design hierarchy

107

A.3 IO Interface

In this section, we indicate the IO interface for a configuration of 4-core cache with

32-bit address, 32-bit cache block, 16-bit tag, 14-bit set index and 2-bit offset. This con-

figuration is the expected usage model. It is the main focus of the simulation exercise.

A.3.1 Uni-core Cache Interface

Table A.3: IO interface for uni-core cache

Signal Type Description
rst Input Active-high reset
core_id Input(2) Identifier for the cache
core_if Interface for interaction with the core
clk Input Clock signal
cpu_rd Input CPU read request
data_in_bus_cpu_lv1 Output Data valid signal for read request
cpu_wr Input CPU write request
cpu_wr_done Output Acknowledge signal for write operation
data_bus_cpu_lv1_wr Input(32) Data bus for write
data_bus_cpu_lv1_rd Output(32) Data bus for read
addr_bus_cpu_lv1 Input(32) Address bus
sbus_if Interface to system bus
in_data_bus_lv1_lv2 Input(32) Data bus for incoming SBUS request
in_addr_bus_lv1_lv2 Input(32) Address for incoming SBUS request
out_data_bus_lv1_lv2 Output(32) Data for outgoing SBUS request
out_addr_bus_lv1_lv2 Output(32) Address for outgoing SBUS request
lv2_rd Output Read to level-2 cache
lv2_wr Output Write to L2 cache
lv2_wr_done Input Write acknowledgment from L2
bus_rd_proc Output Outgoing bus read request
bus_rdx_proc Output Outgoing bus read request with intent to

modify (write)
invalidate_proc Output Outgoing invalidate request
bus_rd_snoop Input Incoming bus read request
bus_rdx_snoop Input Incoming bus read request with intent to

modify (write)

108

Table A.3: Continued

Signal Type Description
invalidate_snoop Input Incoming invalidate request
in_data_in_bus_lv1_lv2 Input Response to outgoing read request
out_data_in_bus_lv1_lv2 Output Response to snoop bus_rd or bus_rdx re-

quest
shared_local Output Signal to indicate if data block is shared
shared Input Signal to indicate if data supplied by

snooping cache is shared
cp_in_cache Output Signal to L2 to ignore the read request as

a copy exists in cache
invalidation_done Output Response to incoming invalidate request
all_invalidation_done Input Signal indicating if other caches have in-

validated the data block
bus_lv1_lv2_req_proc Output Request for primary system bus access
bus_lv1_lv2_gnt_proc Input Grant of primary system bus access
bus_lv1_lv2_req_snoop Output Request for snoop system bus access
bus_lv1_lv2_gnt_snoop Input Grant of snoop system bus access
data_bus_lv1_lv2_wr Output(32) Data bus for write to L2
data_bus_lv1_lv2_rd Input(32) Data bus for read from L2
addr_bus_lv1_lv2 Output(32) Address bus

A.3.2 Multi-core Cache Interface

A.4 Expected Behavior

In this section, we describe the sequence of signals for each type of CPU request. Note

that the signal interaction is described at the uni-core cache level. The primary cache

which has system bus access is called ’proc’, and the snooping cache is labeled ’snoop’.

Uni-core operation is defined for both the proc and snoop caches. Refer to Section A.6 to

understand how uni-core signals are connected to each other.

A reset to the module is expected to completely clear the contents of all the uni-core

caches. CPUs are expected to retain the request as logic high until serviced by the cache.

Similarly, level-2 is required to retain the acknowledgment signal high until the multi-core

109

Table A.4: IO interface for multi-core cache

Signal Type Description
rst Input Active-high reset
core_if Interface(4) Interaction with the cores
bus_lv1_lv2_req_proc Output(4) Request for primary system bus access

sent to arbiter
bus_lv1_lv2_gnt_proc Input(4) Grant of primary system bus access from

arbiter
bus_lv1_lv2_req_snoop Output(4) Request for snoop system bus access

sent to arbiter
bus_lv1_lv2_gnt_snoop Input(4) Grant of snoop system bus access from

arbiter
lv2_rd Output Read to level-2 cache
lv2_wr Output Write to L2 cache
lv2_wr_done Input Write acknowledgment from L2
cp_in_cache Output Signal to L2 to ignore the read request as

a copy exists in cache

L1 cache de-asserts the bus request.

A.4.1 CPU Read

A.4.1.1 Case 1: Read hit

If the block is hit in the L1 cache, then

• Data value is driven on data_bus_cpu_lv1_rd of that processor and data_in_bus_cpu_lv1

is asserted

• Signal bus_lv1_lv2_req_proc remains de-asserted

A.4.1.2 Case 2: Read miss

If the block is not present in the L1 cache, then we have two scenarios:

Scenario 1: Free block available in the set

• Bus access is requested (bus_lv1_lv2_req_proc is asserted high)

110

• Wait until access is granted (bus_lv1_lv2_gnt_proc is to be made high by arbiter)

• Once access granted, bus_rd_proc and lv2_rd is raised for data, whereas only lv_rd

is asserted for instruction access. Concurrently, address of the requested block is put

in out_addr_bus_lv1_lv2. This defines the outgoing request on the system bus.

• L2 cache or another L1 cache will provide the data on in_data_bus_lv1_lv2 and

drive in_data_in_bus_lv1_lv2 high

• Appropriate cache line is updated with the data and corresponding MESI state

Following the above operation, the block will automatically hit in the cache. Therefore,

the sequence described in Case 1 is carried out to complete the request.

Snooping cache:

Concurrently, on the snoop side, L1 caches with copies of the above request block (snoop

hit) perform the following operations. Other caches with copies understand that a uni-core

cache is requesting for read-only access to the block as bus_rd_snoop signal is asserted

(which was made high by above mentioned proc side process). The multiplexer module

connects the bus_rd_proc of the primary cache(proc) to the bus_rd_snoop inputs of the

remaining uni-core cache modules.

• Signal cp_in_cache is asserted, asking L2 to ignore the current bus request

• Snoop bus access is requested (bus_lv1_lv2_req_snoop)

• If in_data_in_bus_lv1_lv2 is asserted and own snoop bus request is not granted, then

bus_lv1_lv2_req_snoop is de-asserted immediately

Copy of block is in Shared/Exclusive state

• Signal shared_local is made high

111

• Data is put in out_data_bus_lv1_lv2 and out_data_in_bus_lv1_lv2 is made high

• MESI state is updated to Shared

• Signal bus_lv1_lv2_req_snoop is de-asserted

Copy of block is in Modified state

• Bus out_data_bus_lv1_lv2 is loaded with data from modified copy

• Signal lv2_wr is asserted to make level 2 cache update its value

• Wait for lv2_wr_done

• Signal shared_local is made high

• Signal out_data_in_bus_lv1_lv2 is made high

• MESI state is updated to Shared

• Signal bus_lv1_lv2_req_snoop is de-asserted

If no other level-1 cache has a copy, then level-2 cache provides the data.

Scenario 2: Free block not available in the set; replacement needed

PLRU algorithm determines the block to be evicted. If this block is Shared/Exclusive,

then the MESI state is changed to Invalid as soon as proc grant is received. No additional

message is relayed on the system bus. This is referred to as a silent eviction. However, if

the block to be replaced is in Modified state, then the following sequence of actions are

adopted.

• Signal bus_lv1_lv2_req_proc is asserted to logic high

• Address of the evicted block is generated from the tag and set index, and loaded into

bus out_addr_bus_lv1_lv2

112

• Bus out_data_bus_lv1_lv2 is loaded with the dirty data

• Signal lv2_wr is made high requesting level 2 cache to update its value

• Once lv2_wr_done is made high by level 2 cache, block is assigned Invalid MESI

state

These set of operations will free the L1 cache line of the evicted block, which in turn

triggers the free block operation described above in Scenario 1.

A.4.2 CPU Write

Firstly, as soon as L1 cache receives a write request, bus_lv1_lv2_req_proc is made

high.

A.4.2.1 Case 1: Write hit

When the block is hit, then the following operations are carried out depending on the

block’s MESI state:

Scenario 1: Block in Modified or Exclusive state

• Cache data is updated with the latest value

• MESI state is altered to Modified

• Signal cpu_wr_done is raised high

• Signal bus_lv1_lv2_req_proc is made low immediately

Scenario 2: Block in Shared state

• Wait for bus_lv1_lv2_gnt_proc to be asserted

• Address is loaded onto out_addr_bus_lv1_lv2

113

• Signal invalidate_proc is made high asking other level-1 caches to make their copy

invalid

• When all such copies are invalidated, all_invalidation_done is made high

• Signal bus_lv1_lv2_req_proc is de-asserted

• Cache data is updated with the latest value

• MESI state is altered to Modified

• Signal cpu_wr_done is raised high

Snoop side for invalidation request

• If block isn’t present, assert invalidation_done until all_invalidation_done is asserted

• If block is present, assert the shared_local signal; subsequently, invalidate the block

in cache and assert invalidation_done until all_invalidation_done is high

A.4.2.2 Case 2: Write miss

The write miss case, similar to the read miss case, has two possibilities.

Scenario 1: Free block available

• Wait for bus_lv1_lv2_gnt_proc to be asserted

• Raise bus_rdx_proc and lv2_rd

• Drive the address on out_addr_bus_lv1_lv2

• Wait till level 2 cache provides the data by making data_in_bus_lv1_lv2 high. Note

that data will always be provided by level 2 cache in this case (bus_rdx request)

• Once in_data_in_bus_lv1_lv2 is high, update the cache with the received data value

and modify the MESI state to Exclusive

114

Following the above operation, the block will automatically hit in the cache. Therefore,

the sequence described in Case 1 for Exclusive write hit is carried out to complete the write

request.

Snooping cache:

On the snoop side, any cache with a copy of the relevant block must undertake the fol-

lowing actions. Firstly, cp_in_cache is asserted as soon as it is snoop hit for a incoming

bus_rdx request. Copy in Shared state

• Signal shared_local is made high

• Cache copy is invalidated

• Signal shared_local is made low

Copy in Exclusive state

• Cache copy is invalidated

Copy in Modified state

• Signal bus_lv1_lv2_req_snoop is raised to ask for access to the bus

• Wait for bus_lv1_lv2_gnt_snoop to be high

• Bus out_data_bus_lv1_lv2 is loaded with data from modified copy

• Signal lv2_wr is asserted to make level 2 cache update its value

• Wait for lv2_wr_done to be high

• Invalidate the copy in cache

• De-assert bus_lv1_lv2_req_snoop

115

An important feature is that level-2 always provides data to a bus_rdx request. The

snooping cache with a dirty copy merely writes the data back into level-2. Subsequently,

level-2 provides the latest data value to the primary cache which made the bus_rdx request.

Scenario 2: Free block not available in the set; replacement needed

PLRU algorithm determines the block to be evicted. If this block is Shared/Exclusive,

then the MESI state is changed to Invalid as soon as proc grant is received. No additional

message is relayed on the system bus. This is referred to as a silent eviction. However, if

the block to be replaced is in Modified state, then the following sequence of actions are

adopted.

• Signal bus_lv1_lv2_req_proc is asserted to logic high

• Address of the evicted block is generated from the tag and set index, and loaded into

bus out_addr_bus_lv1_lv2

• Bus out_data_bus_lv1_lv2 is loaded with the dirty data

• Signal lv2_wr is made high requesting level 2 cache to update its value

• Once lv2_wr_done is made high by level 2 cache, block is assigned Invalid MESI

state

These set of operations will free the L1 cache line of the evicted block, which in turn

triggers the free block operation described above in Scenario 1.

A.5 Timing Specification

We illustrate timing for typical behavior in this section. Signals mentioned are with

reference to the primary cache i.e. proc cache, except when it is a snoop side scenario. In

snoop side illustrations, signals are with reference to the snoop cache.

116

Figure A.5: Read hit scenario

Figure A.6: Write hit scenario with shared block

A.6 Multiplexer Specification

The multiplexer module, within the multi-core cache, serves as the interconnect and

glue-logic between uni-core L1 caches and the level-2 cache. The uni-core cache which

117

Figure A.7: Snoop scenario for bus rd with copy in shared/exclusive

Figure A.8: Snoop scenario for bus rd with copy in modified

has obtained primary system bus access is referred to as ’proc’, other L1 caches and L2

are known as the snooping caches. Here, we describe the routing of signals from the proc

side to the snooping caches.

• Signal lv2_rd supplied to L2 is the logical OR of individual uni-core lv2_rd

• Signal lv2_wr supplied to L2 is the logical OR of individual uni-core lv2_wr

118

• Signal cp_in_cache supplied to L2 is the logical OR of individual uni-core cp_in_cache

• Signal shared is the logical OR of individual uni-core shared_local signals

• Signal all_invalidation_done is the logical AND of all snooping L1 cache’s invali-

dation_done

• Output bus_rd_proc from the proc cache is routed to input bus_rd_snoop of all the

snooping L1 caches

• Output bus_rdx_proc from the proc cache is routed to input bus_rdx_snoop of all

the snooping L1 caches

• Output invalidate_proc from the proc cache is routed to input invalidate_snoop of

all the snooping L1 caches

• Input address bus of snooping caches (L1 and L2) is always driven by the output

out_addr_bus_lv1_lv2 of the proc cache

• Signal in_data_in_bus_lv1_lv2 is driven by the snooping cache with snoop grant

access to the system bus

• Input data to all the caches (L1 and L2) is driven by output data bus of the snooping

cache with snoop grant access to the shared bus. If none of the caches have snoop

grant and lv2_wr is high, data is routed from proc’s out_data_bus_lv1_lv2

A.7 Level-2 Cache

Last level cache is unified, and shared by all the cores. It does not distinguish between

data and instruction address space. If cp_in_cache is logic high, LLC should ignore every

request. An operation, can either be read(lv2_rd) or write(lv2_wr), and is processed only

when cp_in_cache is low. MESI related signals bus_rd, bus_rdx, and invalidate do not

119

concern the level-2 cache. However, it plays a crucial role in the MESI protocol by sup-

plying updated data value and processing write-backs. We define the timing specification

in Figures A.9 and A.10.

Figure A.9: Read serviced by level-2 cache

Figure A.10: Write back to level-2 cache

120

A.8 Arbiter Specification

This module arbitrates access to the shared system bus. There are two types of access

to the common bus, namely processor side access and snoop side access. A simple round-

robin scheme based on least-recently serviced cache is used for the processor side access.

A fixed priority scheme is used for snoop access.

With respect to processor (primary) access, if only one request is observed, it is granted

access on the next clock cycle. However, if more than one request is observed, the least-

recently served cache is granted access first. L1-caches are expected to retain the request

signal high, until serviced. A sample timing diagram is depicted in Figure A.11.

With respect to snoop access, request is granted based on the fixed priority. For the

instance of a 4-core system, L1-cache0 > L1-cache1 > L1-cache2 > L1-cache3 > level-2

cache. LLC is always given the lowest priority. Snoop request is expected to be high, until

one of the snooping cache is given access.

Figure A.11: Arbiter timing diagram

121

APPENDIX B

PROPERTIES

Properties form the crux of any formal property verification exercise. Here, we detail

the cover statements, assumptions and assertions used in various stages of our verification

effort.

B.1 Cover Points

Cover points are often mistakenly thought of as an afterthought to FPV. This can be

disastrous especially in cases when assumptions over-constrain the design. Cover state-

ments ensure that the set of typical behavior expected from the design is possible under the

given set of constraints. They should ideally include: every specified operation, all legal

input-output values, and each type of transaction. This section describes the cover points

used to consistently sanity check our FPV environment. They are reviewed in every stage

of FPV, whenever any of the assumptions are updated.

B.1.1 Uni-core Module

The following cover statements were defined for FPV of the uni-core cache module.

Note that the state transition cover points were defined specifically for a particular cache

line. Additionally, the state transition statements had two versions, namely an immediate

version and an eventual variety. The immediate variant dictates that the state transition

happened in a single clock cycle. An immediate transition from modified/exclusive to

shared is improbable. Therefore, an immediate variant was not defined for these two

transformations. The eventual version prescribed that the MESI state eventually changed

from X to Y.

1. CPU read transaction

122

Simple read operation initiated by the CPU core, and completed with valid data

returned by the associated L1 cache.

2. CPU write transaction

Simple write operation initiated by the core and acknowledged by the associated

L1-cache with write done signal.

3. Outgoing bus_rd_proc transaction

A bus_rd request initiated by the uni-core module.

4. Outgoing bus_rdx_proc transaction

A bus_rdx request initiated by the uni-core module.

5. Outgoing invalidate_proc transaction

An invalidate request initiated by the module.

6. Incoming bus_rd_snoop request

An incoming bus_rd request, serviced by the uni-core cache.

7. Incoming bus_rdx_snoop request

An incoming bus_rdx request serviced by the module.

8. Incoming invalidate_snoop request

An incoming invalidation request and the corresponding response from the uni-core

cache.

9. Instruction cache read miss scenario

An instruction read operation with access to the L2 cache over the system bus.

10. Data cache read miss scenario

A data read operation serviced either by level-2 or another L1 cache.

123

11. Invalid to modified state transition

12. Invalid to shared state transition

13. Invalid to exclusive state transition

14. Exclusive to invalid state transition

15. Exclusive to shared state transition

16. Exclusive to modified state transition

17. Shared to invalid state transition

18. Shared to exclusive state transition

19. Shared to modified state transition

20. Modified to invalid state transition

21. Modified to exclusive state transition

22. Modified to shared state transition

Additionally, we analyzed the behavior for race conditions and contention between

the CPU side and bus side requests with the following cover statements. Contention arises

when CPU and bus-side operations simultaneously access the same data block. We classify

the possible scenarios based on whether the CPU request arrived before or after the snoop-

side message. If both requests are received at the exact same cycle, snoop-side request is

assumed to have occurred first.

1. CPU first, read hit followed by bus_rd

CPU request is received to a data block in the cache. Before the processor operation

is completed, a bus_rd request for the same block is observed on the snoop-side bus.

124

2. CPU first, read miss followed by bus_rd

CPU request to a data block not present in L1 cache. The uni-core cache has ob-

tained the arbiter grant and received a copy of the data block into its cache. Before

the CPU operation is completed, a bus_rd request for the same block is observed on

the snoop side.

3. CPU first, read hit followed by bus_rdx

4. CPU first, read miss followed by bus_rdx

5. CPU first, read hit followed by invalidate

6. CPU first, read miss followed by invalidate

7. CPU first, write hit followed by bus_rd

8. CPU first, write miss followed by bus_rd

9. CPU first, write hit followed by bus_rdx

10. CPU first, write miss followed by bus_rdx

11. CPU first, write hit followed by invalidate

12. CPU first, write miss followed by invalidate

13. Snoop first, bus_rd followed by CPU read

A snoop side bus_rd request is received. Before the snoop-side operation is serviced,

a CPU read request is observed.

14. Snoop first, bus_rd followed by CPU write

15. Snoop first, bus_rdx followed by CPU read

125

16. Snoop first, bus_rdx followed by CPU write

17. Snoop first, invalidate followed by CPU read

18. Snoop first, invalidate followed by CPU write

B.1.2 Multi-core Module

FPV of the multi-core module re-used all the cover points identified in the uni-core

effort. Additionally, the following cover statements were used to ensure typical behavior

and accuracy in the arbiter and memory reference models.

1. Primary grant (bus_lv1_lv2_gnt_proc) is provided to each of the uni-core caches.

2. Snoop grant (bus_lv1_lv2_gnt_snoop) is provided to each of the uni-core caches.

3. All combinations of i and j, such that L1-cachei has proc grant and L1-cachej has

snoop grant of the system bus.

4. Consecutive proc grants separated by a fixed delay

5. Consecutive snoop grants separated by a fixed delay

6. All primary bus (proc) requests asserted and eventually serviced by the arbiter.

7. Maximum possible snoop requests asserted and eventually transaction is completed.

B.2 Assumptions

Assumptions describe the legal behavior of the model inputs. They define the environ-

ment in which the DUV is expected to perform. They effectively constrain the problem

space explored by the FPV tool. In order to facilitate full-proof verification, FPV was

performed in increasing stages of complexity. Several simplifications, in the form of addi-

tional constraints, are introduced in early phases of our formal verification endeavor. We

126

clearly indicate these assumptions, which served to over constrain the design, as used only

in specific stages of the verification process.

B.2.1 Uni-core Module

The generic assumptions common to all complexity stages are listed below:

1. Signals cpu_rd and cpu_wr cannot be high simultaneously in the same clock cycle.

2. Inputs on the CPU-lv1 interface are always legal i.e. no high impedance or unknown

value.

3. Inputs on the system bus(sbus) interface are always legal.

4. Input address on the CPU-lv1 interface is stable during a CPU operation. In other

words, address in unchanged whenever signal cpu_rd or cpu_wr is logic high.

5. Input data on the core interface is stable for the entire duration of a CPU write

request.

6. Input address on the sbus interface is stable for the entire duration of an incoming

snoop-side request.

7. Input data on the sbus interface is stable as long as data valid signal(in_data_in_bus_lv1_lv2)

is asserted.

8. A read request to level-2 cache is serviced within a fixed number of clock cycles,

say BUS_DATA_TIME.

9. A write request to level-2 cache is serviced within a fixed number of clock cycles,

namely LV2_WR_RESP_TIME.

10. An outgoing invalidate request is serviced within a fixed delay, represented by the

parameter INVALIDATE_TIME.

127

11. Signal cpu_rd is de-asserted on the cycle after data valid signal is received from the

level-1 cache.

12. Signal cpu_wr is de-asserted on the clock cycle following a write acknowledgment

from the uni-core cache.

13. An incoming snoop-side bus_rd request is de-asserted once data is provided by

our uni-core module. In terms of signals, out_data_in_bus_lv1_lv2 triggers the de-

assertion of bus_rd_snoop

14. An incoming snoop side bus_rdx request is de-asserted once data is provided by the

level-2 cache.

15. An incoming invalidate snoop-side request is de-asserted on the cycle immediately

after invalidation_done is driven high.

16. Signal shared is high as soon as shared_local is driven logic high.

17. Signal all_invalidation_done is asserted only if invalidation_done is high or an out-

going invalidate request is initiated by the uni-core module.

18. Processor grant(bus_lv1_lv2_gnt_proc) is provided only if the L1 cache has re-

quested for system bus access(bus_lv1_lv2_req_proc).

19. Snoop grant(bus_lv1_lv2_gnt_snoop) is provided only if the L1 cache has requested

for snooping access to system bus access(bus_lv1_lv2_req_snoop).

20. Signal in_data_in_bus_lv1_lv2 can be high only if lv2_rd is active.

21. Signal lv2_wr_done can be high only if lv2_wr is active.

128

22. Snoop side requests are mutually exclusive. Therefore, a maximum of one request

from bus_rd_snoop, bus_rdx_snoop, and invalidate_snoop can be active at any point

of time.

23. An ongoing snoop side request implies that processor grant (bus_lv1_lv2_gnt_proc)

is not given to the uni-core module.

24. Signal in_data_in_bus_lv1_lv2 can be asserted only if the unicore cache has primary

access of the system bus.

25. CPU read request remains high until serviced by L1 cache.

26. CPU write request remains asserted until acknowledged by L1 cache.

27. Snoop side bus_rd request must remain asserted until data is provided by the module

if it has obtained snoop access of the system bus.

28. Snoop side bus_rd request should be high for a minimum of three clock cycles.

29. Snoop side bus_rdx request must remain high as long as cp_in_cache is driven high

by the module under consideration.

30. Snoop side bus_rdx request should be high for a minimum of two clock cycles.

31. Snoop side invalidate request should remain high until the following cycle of a rising

edge on all_invalidation_done.

32. Snoop side request implies that the address of a data block is present on the input

address (in_addr_bus_lv1_lv2) of the shared bus.

33. An outgoing invalidate request is serviced within one clock cycle i.e. INVALI-

DATE_TIME is equal to 1 (This assumption is true as a result of arbiter specifica-

tion).

129

34. An incoming snoop-side invalidate request depends on the current module’s invali-

dation_done signal alone. In other words, all_invalidation_done signal is high when-

ever invalidation_done is high (This assumption is true as a result of arbiter specifi-

cation).

B.2.1.1 Complexity stage 1

The following assumptions are specific to the first stage of the process. They serve to

simplify the verification problem.

1. Allow write operations only to a data block

2. Processor grant (bus_lv1_lv2_gnt_proc) is provided immediately on the clock cycle

following a primary access request (bus_lv1_lv2_req_proc) to the system bus.

3. Snoop grant (bus_lv1_lv2_gnt_snoop) is provided immediately on the clock cycle

following a snoop access request (bus_lv1_lv2_req_snoop) to the system bus.

4. Data is provided on the system bus within a fixed latency (BUS_DATA_RESP = 2).

B.2.1.2 Complexity stage 2

1. Allow write operations to all blocks (instruction and data).

2. Processor grant (bus_lv1_lv2_gnt_proc) is provided immediately on the clock cycle

following a primary access request (bus_lv1_lv2_req_proc) to the system bus.

3. Snoop grant (bus_lv1_lv2_gnt_snoop) is provided immediately on the clock cycle

following a snoop access request (bus_lv1_lv2_req_snoop) to the system bus.

4. Data is provided on the system bus within a fixed latency (BUS_DATA_RESP = 3).

130

B.2.1.3 Complexity stage 3

1. Allow write operations to all blocks (instruction and data).

2. Processor grant (bus_lv1_lv2_gnt_proc) is provided within 45 clock cycle following

a primary access request (bus_lv1_lv2_req_proc) to the system bus. Value of 45 is

determined using worst case analysis for a 4-core system. If each of the other L1-

caches perform a system bus operation including eviction and write-back, it would

take each L1 cache exactly 15 cycles. This analysis is validated in multi-core FPV.

3. Snoop grant (bus_lv1_lv2_gnt_snoop) is provided immediately on the clock cycle

following a snoop access request (bus_lv1_lv2_req_snoop) to the system bus only

if the block is in modified/exclusive state.

4. Data is provided on the system bus within a fixed latency (BUS_DATA_RESP = 9).

The value of 9 is determined using multi-core FPV.

B.2.2 Multi-core Module

Assumptions on inputs of the core_if in the uni-core setting are re-used in the multi-

core environment. These assumptions, which define behavior of the CORE (CPU), are

in accordance with the specification. All other assumptions used in the uni-core setting

are converted into assertions in the instantiation environment. We use auxiliary SV code,

compliant with the specification, to model behavior of level-2 cache and the round-robin

arbiter. No additional constraints were necessary for the multi-core FPV effort.

Auxiliary SV code for level-2 and arbiter is provided below:

1 / /−−
2 / / model f o r a r b i t e r
3 / /−−−
4 wire proc_gn t_any , snoop_gn t_any ;
5
6 b i t [‘NO_OF_CORE−1 : 0] b u s _ l v 1 _ l v 2 _ g n t _ p r o c _ p r e ;
7 b i t [‘NO_OF_CORE−1 : 0] b u s _ l v 1 _ l v 2 _ g n t _ s n o o p _ p r e ;
8
9 b i t [1 : 0] c o u n t [NO_OF_CORE−1 : 0] ;

131

10
11 a s s i g n p r o c _ g n t _ a n y = | b u s _ l v 1 _ l v 2 _ g n t _ p r o c ;
12 a s s i g n snoop_gn t_any = | b u s _ l v 1 _ l v 2 _ g n t _ s n o o p ;
13 i n t va l , number , max ;
14
15 f u n c t i o n i n t gnt_number () ;
16 max = 0 ;
17 f o r (i n t i =0 ; i <‘NO_OF_CORE ; i ++) begin
18 i f (b u s _ l v 1 _ l v 2 _ r e q _ p r o c [i] == 1 ’ b1) begin
19 i f (c o u n t [i] > max) begin
20 max = c o u n t [i] ;
21 number = i ;
22 end
23 end
24 end
25 r e t u r n number ;
26 endfunc t ion
27
28 always@ (posedge c l k or posedge r s t) begin
29 i f (r s t) begin
30 b u s _ l v 1 _ l v 2 _ g n t _ p r o c _ p r e <= ‘NO_OF_CORE’ b0 ;
31 f o r (i n t i =0 ; i <‘NO_OF_CORE ; i = i +1) begin
32 c o u n t [i] <= i ;
33 end
34 end e l s e i f (~ p r o c _ g n t _ a n y && (| b u s _ l v 1 _ l v 2 _ r e q _ p r o c)) begin
35 i f (! (| (b u s _ l v 1 _ l v 2 _ r e q _ p r o c & (b u s _ l v 1 _ l v 2 _ r e q _ p r o c −1)))) begin
36 b u s _ l v 1 _ l v 2 _ g n t _ p r o c _ p r e <= b u s _ l v 1 _ l v 2 _ r e q _ p r o c ;
37 end e l s e begin
38 b u s _ l v 1 _ l v 2 _ g n t _ p r o c _ p r e <= ‘NO_OF_CORE’ b0 ;
39 v a l = gnt_number () ;
40 b u s _ l v 1 _ l v 2 _ g n t _ p r o c _ p r e [v a l] <= 1 ’ b1 ;
41 f o r (i n t i =0 ; i <‘NO_OF_CORE ; i = i +1) begin
42 i f (i != v a l && c o u n t [i] < c o u n t [v a l]) begin
43 c o u n t [i] <= c o u n t [i] + 1 ;
44 end
45 end
46 c o u n t [v a l] <= 2 ’ b0 ;
47 end
48 end e l s e i f (p r o c _ g n t _ a n y) begin
49 b u s _ l v 1 _ l v 2 _ g n t _ p r o c _ p r e <= b u s _ l v 1 _ l v 2 _ g n t _ p r o c ;
50 end e l s e begin
51 b u s _ l v 1 _ l v 2 _ g n t _ p r o c _ p r e <= ‘NO_OF_CORE’ b0 ;
52 end
53 end
54
55 / / snoop g r a n t
56 always@ (posedge c l k or posedge r s t) begin
57 i f (r s t) begin
58 b u s _ l v 1 _ l v 2 _ g n t _ s n o o p _ p r e <= ‘NO_OF_CORE’ b0 ;
59 b u s _ l v 1 _ l v 2 _ g n t _ l v 2 _ p r e <= 1 ’ b0 ;
60 end e l s e i f (! p r o c _ g n t _ a n y) begin
61 b u s _ l v 1 _ l v 2 _ g n t _ s n o o p _ p r e <= ‘NO_OF_CORE’ b0 ;
62 b u s _ l v 1 _ l v 2 _ g n t _ l v 2 _ p r e <= 1 ’ b0 ;
63 end e l s e begin
64 b u s _ l v 1 _ l v 2 _ g n t _ s n o o p _ p r e <= ‘NO_OF_CORE’ b0 ;
65 i f (b u s _ l v 1 _ l v 2 _ r e q _ s n o o p [0] == 1 ’ b1)
66 b u s _ l v 1 _ l v 2 _ g n t _ s n o o p _ p r e [0] <= 1 ’ b1 ;
67 e l s e i f (b u s _ l v 1 _ l v 2 _ r e q _ s n o o p [1] == 1 ’ b1)
68 b u s _ l v 1 _ l v 2 _ g n t _ s n o o p _ p r e [1] <= 1 ’ b1 ;
69 e l s e i f (b u s _ l v 1 _ l v 2 _ r e q _ s n o o p [2] == 1 ’ b1)
70 b u s _ l v 1 _ l v 2 _ g n t _ s n o o p _ p r e [2] <= 1 ’ b1 ;
71 e l s e i f (b u s _ l v 1 _ l v 2 _ r e q _ s n o o p [3] == 1 ’ b1)
72 b u s _ l v 1 _ l v 2 _ g n t _ s n o o p _ p r e [3] <= 1 ’ b1 ;
73 e l s e i f (b u s _ l v 1 _ l v 2 _ r e q _ l v 2)
74 b u s _ l v 1 _ l v 2 _ g n t _ l v 2 _ p r e <= 1 ’ b0 ;
75 end
76 end
77
78 mc_u_proc_gnt : assume p r o p e r t y (b u s _ l v 1 _ l v 2 _ g n t _ p r o c == (b u s _ l v 1 _ l v 2 _ g n t _ p r o c _ p r e &

b u s _ l v 1 _ l v 2 _ r e q _ p r o c)) ;

132

79 mc_u_snoop_gnt : assume p r o p e r t y (b u s _ l v 1 _ l v 2 _ g n t _ s n o o p == (b u s _ l v 1 _ l v 2 _ g n t _ s n o o p _ p r e &
b u s _ l v 1 _ l v 2 _ r e q _ s n o o p)) ;

80 mc_u_lv2_gnt : assume p r o p e r t y (b u s _ l v 1 _ l v 2 _ g n t _ l v 2 == (b u s _ l v 1 _ l v 2 _ g n t _ l v 2 _ p r e &
b u s _ l v 1 _ l v 2 _ r e q _ l v 2)) ;

81
82 / /−−−
83 / / model f o r memory
84 / /−−−
85 b i t [DATA_WID−1:0] memory [(1 < <(ADDR_WID−OFFSET_WID)) −1:0] ;
86 b i t [DATA_WID−1:0] v a l i d _ d a t a ;
87 b i t lv2_wr_done_pre , d a t a _ i n _ b u s _ l v 1 _ l v 2 _ p r e , b u s _ l v 1 _ l v 2 _ r e q _ l v 2 ;
88
89 always@ (posedge c l k) begin
90 i f (r s t) begin
91 f o r (i n t i =0 ; i <(‘DL_ADDR_BOUND> >2) ; i = i +1) begin
92 memory [i] <= ‘DATA_WID_LV1’ hD ;
93 end
94 v a l i d _ d a t a <= ‘DATA_WID_LV1’ h00 ;
95 d a t a _ i n _ b u s _ l v 1 _ l v 2 _ p r e <= 1 ’ b0 ;
96 l v2_wr_done_pre <= 1 ’ b0 ;
97 end e l s e i f (l v 2 _ r d && ~ c p _ i n _ c a c h e && b u s _ l v 1 _ l v 2 _ g n t _ l v 2) begin
98 v a l i d _ d a t a <= memory [a d d r _ b u s _ l v 1 _ l v 2 [ADDR_WID−1:OFFSET_WID]] ;
99 d a t a _ i n _ b u s _ l v 1 _ l v 2 _ p r e <= 1 ’ b1 ;

100 end e l s e i f (lv2_wr) begin
101 memory [a d d r _ b u s _ l v 1 _ l v 2 [ADDR_WID−1:OFFSET_WID]] <=

d a t a _ b u s _ l v 1 _ l v 2 _ w r ;
102 l v2_wr_done_pre <= 1 ’ b1 ;
103 end e l s e begin
104 d a t a _ i n _ b u s _ l v 1 _ l v 2 _ p r e <= 1 ’ b0 ;
105 l v2_wr_done_pre <= 1 ’ b0 ;
106 end
107 end
108
109 mc_u_ lv2_da t a_ rd : assume p r o p e r t y (d a t a _ b u s _ l v 1 _ l v 2 _ r d == v a l i d _ d a t a) ;
110 mc_u_da ta_ in_bus : assume p r o p e r t y (d a t a _ i n _ b u s _ l v 1 _ l v 2 == (d a t a _ i n _ b u s _ l v 1 _ l v 2 _ p r e &

l v 2 _ r d)) ;
111 mc_u_lv2_wr_done : assume p r o p e r t y (lv2_wr_done == (lv2_wr_done_pre & lv2_wr)) ;
112 mc_u_lv2_req1 : assume p r o p e r t y ((l v 2 _ r d && ! c p _ i n _ c a c h e) |= > b u s _ l v 1 _ l v 2 _ r e q _ l v 2) ;
113 mc_u_lv2_req2 : assume p r o p e r t y ((! l v 2 _ r d | | c p _ i n _ c a c h e) |= > ! b u s _ l v 1 _ l v 2 _ r e q _ l v 2) ;

B.3 Assertions

Assertions are properties that we wish to prove about the design under legal stimu-

lus. These statements are directly derived from the specification. Assertions are generally

properties about the DUV’s outputs, while assumptions describe the DUV’s inputs. Asser-

tions, which provide maximum insight, are end-to-end variants which only consider ports

at the IO interface of the module. Alternatively, assertions can also be defined in terms

of internal design signals. We use a mixture of end-to-end and internal assertions in our

analysis.

B.3.1 Uni-core Module

Assertions defined for the uni-core FPV effort are described below.

133

B.3.1.1 CPU-lv1 interface

1. All outputs on the CPU-lv1 interface should be legal.

2. CPU read and write response signals are mutually exclusive.

3. Signal data_in_bus_cpu_lv1 is high only if CPU read operation is requested.

4. Write acknowledgment (cpu_wr_done) is given only if a CPU write operation is

requested.

5. Output data bus is unchanged as long as data valid signal is logic high.

B.3.1.2 System bus interface

1. All outputs on the system bus interface should be legal.

2. Output address is unchanged when a outgoing request on the system bus, namely

lv2_rd, lv2_wr, or invalidate_proc is asserted.

3. Data output to level-2 cache is stable during a level-2 write operation.

4. Data returned in response to a snoop-side bus_rd operation should be stable as long

as out_data_in_bus_lv1_lv2 is logic high.

5. Signal cp_in_cache can go high only if there was a snoop side request (bus_rd or

bus_rdx) on the previous clock cycle.

6. If there is an active snoop side request and lv2wr are asserted, signal cp_in_cache

should be logic high.

7. If out_data_in_bus_lv1_lv2 is high, i.e. uni-core module is providing data to another

L1 cache, shared_local and cp_in_cache signals must be asserted.

134

8. If an outgoing bus_rd or bus_rdx operation is on-going, lv2_rd should be asserted.

9. If a level-2 read operation is in progress, a rising edge on data valid signal should

trigger a falling edge on level-2 read request in the next clock cycle.

10. If a level-2 write operation is in progress, a rising edge on lv2_wr_done signal should

trigger a falling edge on level-2 write request in the next clock cycle.

11. If a bus read operation is in progress, a rising edge on data valid signal should trigger

a falling edge on bus_rd_proc in the next clock cycle.

12. If a ’bus read with intent to modify’ operation is in progress, a rising edge on data

valid signal should trigger a falling edge on bus_rdx_proc in the next clock cycle.

13. If an outgoing invalidate operation is in progress, a rising edge on all_invalidation_done

signal should trigger a falling edge on invalidate_proc in the next clock cycle.

14. Level-2 read and write signals cannot be asserted at the same instant.

15. The uni-core module can initiate a request (lv2_rd, bus_rd, bus_rdx, or invalidate)

only if it has primary access granted to the system bus (bus_lv1_lv2_gnt_proc).

16. The uni-core module can initiate a level-2 write only if it has either primary or snoop

access granted to the system bus.

17. DUV should request for primary access to the system bus only if any CPU operation

is pending on the CPU-lv1 interface.

B.3.1.3 Liveness properties

1. A CPU read operation is completed within a fixed number of clock cycles, repre-

sented by CPU_RD_RESP_TIME.

135

2. A CPU write operation is completed within a fixed number of clock cycles, repre-

sented by CPU_WR_RESP_TIME.

B.3.1.4 MESI protocol

1. A state transition from invalid to modified implies that there was a CPU write to the

relevant data block, which resulted in a outward bus_rdx request on the system bus.

2. A transition from invalid to shared implies that a CPU read operation resulted in a

cache miss and shared signal was high in response to the outward bus_rd request.

3. A transition from invalid to exclusive state implies that a CPU read operation re-

sulted in a cache miss and shared signal was low.

4. A shared to invalid transition implies either of two possibilities. First, the relevant

cache block was evicted by a CPU operation. Second, an incoming snoop side

request i.e. either bus_rdx_snoop or invalidate_snoop invalidated the data block.

5. A shared to exclusive transition should never be observed.

6. A change from shared to modified state implies that there was a CPU write opera-

tion, which resulted in an outward invalidation request.

7. A transition from exclusive to invalid state again implies two possibilities. First,

the relevant cache block was evicted by a CPU operation. Second, an incoming

snoop side request i.e. either bus_rdx_snoop or invalidate_snoop invalidated the

data block.

8. An exclusive to shared transition implies an incoming bus_rd request was observed

on the snoop-side system bus.

136

9. An exclusive to modified transition assures us that a CPU write operation resulted

in a hit to this exclusive block.

10. A modified to invalid transition implies two possibilities. First, the relevant cache

block was evicted by a CPU operation. Second, an incoming snoop side request i.e.

either bus_rdx_snoop or invalidate_snoop invalidated the data block.

11. A modified to exclusive state transition is improbable.

12. A modified to shared state change is always triggered by a incoming bus_rd request

on the common bus.

B.3.1.5 Coherence and memory consistency

The properties described in this section are crucial to guarantee coherence and memory

consistency. They are inspired by the invariants defining coherence, presented in Section

1.1. A reference model is required to facilitate these assertions. This model maintains a

copy of the valid data, which is referred as VCompData, within the verification component.

Whenever data is supplied by the DUV, we essentially check for equivalence between the

supplied data and VCompData. This copy is updated whenever there is a new CPU write

operation to the uni-core module under consideration. Additionally, VCompData is also

updated when an updated value is presented in response to a bus or level-2 read.

1. Data output by the uni-core module in response to a CPU read operation is equivalent

to VCompData.

2. Data written back to level-2 cache by the DUV, in case of modified block eviction,

is equal to VCompData.

3. Data written back to level-2 cache in response to an inward bus_rdx request is the

same as VCompData.

137

4. Data provided by the DUV in response to a snoop-side bus_rd request is equivalent

to VCompData.

B.3.1.6 Bug fixes

Several properties were added on-the-fly during the verification process. Specifically,

the assertions in this section were added to reflect the proposed bug fixes. They are vital

to ensure that design changes were implemented flawlessly.

A reference model was created to mimic the major architectural change propose d to

overcome the contention issue between the processor and snoop-side requests. The ref-

erence model accurately recreates variables Conflict, CPUFirst, and SnoopFirst. Variable

Conflict signified that a simultaneous CPU and snoop request to the same data block is ob-

served. CPUFirst implies that the CPU operation must be given higher priority. Similarly

SnoopFirst implies that the snoop-side request must be completed with higher priority.

As a corollary, CPU operations are halted when SnoopFirst is asserted, and snoop-side

requests are stalled when CPUFirst is logic high. This is clearly in line with the bug fix

proposed in Section 5.2.2. The assertions relevant to this bug fix are listed below:

1. If there is a conflict and SnoopFirst has been asserted, the CPU operation should not

receive a response.

2. If there is a conflict and CPUFirst has been asserted, the snoop-side request should

not receive a response from this uni-core module.

Additionally, the following assertions were added to validate other independent bug

fixes.

1. Signal data_in_bus_cpu_lv1 can be high only when input cpu_rd is high.

2. Signal cpu_wr_done can be high only when input cpu_wr is high.

138

3. Once the DUV has obtained primary access of the system bus, it should either re-

quest level-2 read, write or bus invalidate.

4. Once the DUV has obtained snoop side access of the system bus, it should either

provide data or perform a write-back to level-2 cache.

B.3.2 Multi-core Module

All assertions from uni-core FPV were re-used in the multi-core module’s property

verification. All assumptions, except constraints on inputs of core_if, are redefined as

assertions for multi-core FPV. This guarantees that the assumptions defined in uni-core

verification are valid and safe. Additionally, we defined the following assertions specifi-

cally to guarantee accurate behavior of the arbiter model.

1. Outputs of the multi-core module are valid and legal

2. Address is stable during level-2 read and write

3. Data is unchanged during level-2 write

4. Primary (proc) grant to system bus is one-hot encoded. In other words, no more than

one agent can hold primary access to the shared bus.

5. Snoop grant to the system bus is one-hot encoded. No more than a single agent is

provided snoop grant.

6. A logic high on any snoop grant, implies that one bit on proc grant was asserted in

the previous cycle.

7. A logic high on any proc request, implies that either proc grant will be asserted in

the next cycle or one of the L1-caches will drop its request in the following cycle.

139

Most importantly, we defined the coherence and consistency assertion based on the

data-value invariant. A CPU read on any of the cores should provide data on the previous

successful CPU write. This is easily described as an end-to-end assertion in the multi-core

model’s FPV.

140

