1,460 research outputs found

    Verifiable Round-Robin Scheme for Smart Homes

    Full text link
    Advances in sensing, networking, and actuation technologies have resulted in the IoT wave that is expected to revolutionize all aspects of modern society. This paper focuses on the new challenges of privacy that arise in IoT in the context of smart homes. Specifically, the paper focuses on preventing the user's privacy via inferences through channel and in-home device activities. We propose a method for securely scheduling the devices while decoupling the device and channels activities. The proposed solution avoids any attacks that may reveal the coordinated schedule of the devices, and hence, also, assures that inferences that may compromise individual's privacy are not leaked due to device and channel level activities. Our experiments also validate the proposed approach, and consequently, an adversary cannot infer device and channel activities by just observing the network traffic.Comment: Accepted in ACM Conference on Data and Application Security and Privacy (CODASPY), 2019. 12 page

    Privacy-Preserving Transactive Energy Management for IoT-aided Smart Homes via Blockchain

    Full text link
    With the booming of smart grid, The ubiquitously deployed smart meters constitutes an energy internet of things. This paper develops a novel blockchain-based transactive energy management system for IoT-aided smart homes. We consider a holistic set of options for smart homes to participate in transactive energy. Smart homes can interact with the grid to perform vertical transactions, e.g., feeding in extra solar energy to the grid and providing demand response service to alleviate the grid load. Smart homes can also interact with peer users to perform horizontal transactions, e.g., peer-to-peer energy trading. However, conventional transactive energy management method suffers from the drawbacks of low efficiency, privacy leakage, and single-point failure. To address these challenges, we develop a privacy-preserving distributed algorithm that enables users to optimally manage their energy usages in parallel via the smart contract on the blockchain. Further, we design an efficient blockchain system tailored for IoT devices and develop the smart contract to support the holistic transactive energy management system. Finally, we evaluate the feasibility and performance of the blockchain-based transactive energy management system through extensive simulations and experiments. The results show that the blockchain-based transactive energy management system is feasible on practical IoT devices and reduces the overall cost by 25%.Comment: To appea

    Privacy Preservation & Security Solutions in Blockchain Network

    Get PDF
    Blockchain has seen exponential progress over the past few years, and today its usage extends well beyond cryptocurrencies. Its features, including openness, transparency, secure communication, difficult falsification, and multi-consensus, have made it one of the most valuable technology in the world. In most open blockchain platforms, any node can access the data on the blockchain, which leads to a potential risk of personal information leakage. So the issue of blockchain privacy and security is particularly prominent and has become an important research topic in the field of blockchain. This dissertation mainly summarizes my research on blockchain privacy and security protection issues throughout recent years. We first summarize the security and privacy vulnerabilities in the mining pools of traditional bitcoin networks and some possible protection measures. We then propose a new type of attack: coin hopping attack, in the case of multiple blockchains under an IoT environment. This attack is only feasible in blockchain-based IoT scenarios, and can significantly reduce the operational efficiency of the entire blockchain network in the long run. We demonstrate the feasibility of this attack by theoretical analysis of four different attack models and propose two possible solutions. We also propose an innovative hybrid blockchain crowdsourcing platform solution to settle the performance bottlenecks and various challenges caused by privacy, scalability, and verification efficiency problems of current blockchain-based crowdsourcing systems. We offer flexible task-based permission control and a zero-knowledge proof mechanism in the implementation of smart contracts to flexibly obtain different levels of privacy protection. By performing several tests on Ethereum and Hyperledger Fabric, EoS.io blockchains, the performance of the proposed platform consensus under different transaction volumes is verified. At last, we also propose further investigation on the topics of the privacy issues when combining AI with blockchain and propose some defense strategies

    Recent Trends on Privacy-Preserving Technologies under Standardization at the IETF

    Full text link
    End-users are concerned about protecting the privacy of their sensitive personal data that are generated while working on information systems. This extends to both the data they actively provide including personal identification in exchange for products and services as well as its related metadata such as unnecessary access to their location. This is when certain privacy-preserving technologies come into a place where Internet Engineering Task Force (IETF) plays a major role in incorporating such technologies at the fundamental level. Thus, this paper offers an overview of the privacy-preserving mechanisms for layer 3 (i.e. IP) and above that are currently under standardization at the IETF. This includes encrypted DNS at layer 5 classified as DNS-over-TLS (DoT), DNS-over-HTTPS (DoH), and DNS-over-QUIC (DoQ) where the underlying technologies like QUIC belong to layer 4. Followed by that, we discuss Privacy Pass Protocol and its application in generating Private Access Tokens and Passkeys to replace passwords for authentication at the application layer (i.e. end-user devices). Lastly, to protect user privacy at the IP level, Private Relays and MASQUE are discussed. This aims to make designers, implementers, and users of the Internet aware of privacy-related design choices.Comment: 9 pages, 5 figures, 1 tabl

    Voting over a distributed ledger: an interdisciplinary perspective

    Get PDF
    This work discusses the potential of a blockchain based infrastructure for a decentralised online voting platform. When compared to monograph based voting, online voting can vastly increase the speed that votes can be counted, expand the overall accessibility of the election system and decrease the cost of turnout. Yet despite these advantages, online voting for political office is subject to fraud at various levels due to its centralised nature. In this monograph, we describe a general architecture of a centralised online voting system and detail which areas of such a system are vulnerable to electoral fraud. We then proceed to introduce the key ideas underlying blockchain technology as a decentralised mechanism that can address these problems. We discuss the advantages and weaknesses of the blockchain technology, the protocols the technology uses and what criteria a good blockchain protocol should satisfy (depending on the voting application). We argue that the decentralisation inherent in the blockchain technology could increase the public's trust in national elections, as well as eliminate voter impersonation and double voting. We conclude with a discussion regarding how economists and social scientists can collaborate with the blockchain community in a research agenda on the design of efficient blockchain protocols and new voting systems such as liquid democracy

    On distributed ledger technology for the internet of things: design and applications

    Get PDF
    Distributed ledger technology (DLT) can used to store information in such a way that no individual or organisation can compromise its veracity, contrary to a traditional centralised ledger. This nascent technology has received a great deal of attention from both researchers and practitioners in recent years due to the vast array of open questions related to its design and the assortment novel applications it unlocks. In this thesis, we are especially interested in the design of DLTs suitable for application in the domain of the internet of things (IoT), where factors such as efficiency, performance and scalability are of paramount importance. This work confronts the challenges of designing IoT-oriented distributed ledgers through analysis of ledger properties, development of design tools and the design of a number of core protocol components. We begin by introducing a class of DLTs whose data structures consist of directed acyclic graphs (DAGs) and which possess properties that make them particularly well suited to IoT applications. With a focus on the DAG structure, we then present analysis through mathematical modelling and simulations which provides new insights to the properties of this class of ledgers and allows us to propose novel security enhancements. Next, we shift our focus away from the DAG structure itself to another open problem for DAG-based distributed ledgers, that of access control. Specifically, we present a networking approach which removes the need for an expensive and inefficient mechanism known as Proof of Work, solving an open problem for IoT-oriented distributed ledgers. We then draw upon our analysis of the DAG structure to integrate and test our new access control with other core components of the DLT. Finally, we present a mechanism for orchestrating the interaction between users of a DLT and its operators, seeking to improves the usability of DLTs for IoT applications. In the appendix, we present two projects also carried out during this PhD which showcase applications of this technology in the IoT domain.Open Acces
    • …
    corecore