5 research outputs found

    Design and analysis of Intelligent Navigational controller for Mobile Robot

    Get PDF
    Since last several years requirement graph for autonomous mobile robots according to its virtual application has always been an upward one. Smother and faster mobile robots navigation with multiple function are the necessity of the day. This research is based on navigation system as well as kinematics model analysis for autonomous mobile robot in known environments. To execute and attain introductory robotic behaviour inside environments(e.g. obstacle avoidance, wall or edge following and target seeking) robot uses method of perception, sensor integration and fusion. With the help of these sensors robot creates its collision free path and analyse an environmental map time to time. Mobile robot navigation in an unfamiliar environment can be successfully studied here using online sensor fusion and integration. Various AI algorithm are used to describe overall procedure of mobilerobot navigation and its path planning problem. To design suitable controller that create collision free path are achieved by the combined study of kinematics analysis of motion as well as an artificial intelligent technique. In fuzzy logic approach, a set of linguistic fuzzy rules are generated for navigation of mobile robot. An expert controller has been developed for the navigation in various condition of environment using these fuzzy rules. Further, type-2 fuzzy is employed to simplify and clarify the developed control algorithm more accurately due to fuzzy logic limitations. In addition, recurrent neural network (RNN) methodology has been analysed for robot navigation. Which helps the model at the time of learning stage. The robustness of controller has been checked on Webots simulation platform. Simulation results and performance of the controller using Webots platform show that, the mobile robot is capable for avoiding obstacles and reaching the termination point in efficient manner

    Fusion of low-cost and light-weight sensor system for mobile flexible manipulator

    Get PDF
    There is a need for non-industrial robots such as in homecare and eldercare. Light-weight mobile robots preferred as compared to conventional fixed based robots as the former is safe, portable, convenient and economical to implement. Sensor system for light-weight mobile flexible manipulator is studied in this research. A mobile flexible link manipulator (MFLM) contributes to high amount of vibrations at the tip, giving rise to inaccurate position estimations. In a control system, there inevitably exists a lag between the sensor feedback and the controller. Consequently, it contributed to instable control of the MFLM. Hence, there it is a need to predict the tip trajectory of the MFLM. Fusion of low cost sensors is studied to enhance prediction accuracy at the MFLM’s tip. A digital camera and an accelerometer are used predict tip of the MFLM. The main disadvantage of camera is the delayed feedback due to the slow data rate and long processing time, while accelerometer composes cumulative errors. Wheel encoder and webcam are used for position estimation of the mobile platform. The strengths and limitations of each sensor were compared. To solve the above problem, model based predictive sensor systems have been investigated for used on the mobile flexible link manipulator using the selected sensors. Mathematical models were being developed for modeling the reaction of the mobile platform and flexible manipulator when subjected to a series of input voltages and loads. The model-based Kalman filter fusion prediction algorithm was developed, which gave reasonability good predictions of the vibrations of the tip of flexible manipulator on the mobile platform. To facilitate evaluation of the novel predictive system, a mobile platform was fabricated, where the flexible manipulator and the sensors are mounted onto the platform. Straight path motions were performed for the experimental tests. The results showed that predictive algorithm with modelled input to the Extended Kalman filter have best prediction to the tip vibration of the MFLM

    Generating timed trajectories foran autonomous robot

    Get PDF
    Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e ComputadoresThe inclusion of timed movements in control architectures for mobile navigation has received an increasing attention over the last years. Timed movements allow modulat- ing the behavior of the mobile robot according to the elapsed time, such that the robot reaches a goal location within a specified time constraint. If the robot takes longer than expected to reach the goal location, its linear velocity is increased for compen- sating the delay. Timed movements are also relevant when sequences of missions are considered. The robot should follow the predefined time schedule, so that the next mission is initiated without delay. The performance of the architecture that controls the robot can be validated through simulations and field experiments. However, ex- perimental tests do not cover all the possible solutions. These should be guided by a stability analysis, which might provide directions to improve the architecture design in cases of inadequate performance of the architecture. This thesis aims at developing a navigation architecture and its stability analysis based on the Contraction Theory. The architecture is based on nonlinear dynamical systems and must guide a mobile robot, such that it reaches a goal location within a time constraint while avoiding unexpected obstacles in a cluttered and dynamic real environment. The stability analysis based on the Contraction Theory might provide conditions to the dynamical systems parameters, such that the dynamical systems are designed as contracting, ensuring the global exponential stability of the architecture. Furthermore, Contraction Theory provides solutions to analyze the success of the mis- sion as a stability problem. This provides formal results that evaluate the performance of the architecture, allowing the comparison to other navigation architectures. To verify the ability of the architecture to guide the mobile robot, several experi- mental tests were conducted. The obtained results show that the proposed architecture is able to drive mobile robots with timed movements in indoor environments for large distances without human intervention. Furthermore, the results show that the Con- traction Theory is an important tool to design stable control architectures and to analyze the success of the robotic missions as a stability problem.A inclusão de movimentos temporizados em arquitecturas de controlo para navegação móvel tem aumentado ao longo dos últimos anos. Movimentos temporizados permitem modular o comportamento do robô de tal forma que ele chegue ao seu destino dentro de um tempo especificado. Se o robô se atrasar, a sua velocidade linear deve ser aumen- tada para compensar o atraso. Estes movimentos são também importantes quando se consideram sequências de missões. O robô deve seguir o escalonamento da sequência, de tal forma que a próxima missão seja iniciada sem atraso. O desempenho da arqui- tectura pode ser validado através de simulações e experiências reais. Contudo, testes experimentais não cobrem todas as possíveis soluções. Estes devem ser conduzidos por uma análise de estabilidade, que pode fornecer direcções para melhorar o desempenho da arquitectura. O objectivo desta tese é desenvolver uma arquitectura de navegação e analisar a sua estabilidade através da teoria da Contracção. A arquitectura é baseada em sistemas dinâmicos não lineares e deve controlar o robô móvel num ambiente real, desordenado e dinâmico, de tal modo que ele chegue à posição alvo dentro de uma restrição de tempo especificada. A análise de estabilidade baseada na teoria da Contracção pode fornecer condições aos parâmetros dos sistemas dinâmicos de modo a desenha-los como contracções, e assim garantir a estabilidade exponencial global da arquitectura. Esta teoria fornece ainda soluções interessantes para analisar o sucesso da missão como um problema de estabilidade. Isto providencia resultados formais que avaliam o desem- penho da arquitectura e permitem a comparação com outras arquitecturas. Para verificar a habilidade da arquitectura em controlar o robô móvel, foram con- duzidos vários testes experimentais. Os resultados obtidos mostram que a arquitectura proposta é capaz de controlar robôs móveis com movimentos temporizados em ambi- entes interiores durante grandes distâncias e sem intervenção humana. Além disso, os resultados mostram que a teoria da Contracção é uma ferramenta importante para desenhar arquitecturas de controlo estáveis e para analisar o sucesso das missões efec- tuadas pelo robô como um problema de estabilidade.Portuguese Science and Technology Foundation (FCT) SFRH/BD/68805/2010
    corecore