4 research outputs found

    Experimental measurements of a joint 5G-VLC communication for future vehicular networks

    Full text link
    One of the main revolutionary features of 5G networks is the ultra-low latency that will enable new services such as those for the future smart vehicles. The 5G technology will be able to support extreme-low latency. Thanks to new technologies and the wide flexible architecture that integrates new spectra and access technologies. In particular, Visible Light Communication (VLC) is envisaged as a very promising technology for vehicular communications, since the information can flow by using the lights (as traffic-lights and car lights). This paper describes one of the first experiments on the joint use of 5G and VLC networks to provide real-time information to cars. The applications span from road safety to emergency alarm

    Passive visible light detection of humans

    Get PDF
    This paper experimentally investigates passive human visible light sensing (VLS). A passive VLS system is tested consisting of one light emitting diode (LED) and one photodiode-based receiver, both ceiling-mounted. There is no line of sight between the LED and the receiver, so only reflected light can be considered. The influence of a human is investigated based on the received signal strength (RSS) values of the reflections of ambient light at the photodiode. Depending on the situation, this influence can reach up to +/- 50%. The experimental results show the influence of three various clothing colors, four different walking directions and four different layouts. Based on the obtained results, a human pass-by detection system is proposed and tested. The system achieves a detection rate of 100% in a controlled environment for 21 experiments. For a realistic corridor experiment, the system keeps its detection rate of 100% for 19 experiments

    Vehicular visible light networks for urban mobile crowd sensing

    No full text
    Crowd sensing is a powerful tool to map and predict interests and events. In the future, it could be boosted by an increasing number of connected vehicles sharing information and intentions. This will be made available by on board wireless connected devices able to continuously communicate with other vehicles and with the environment. Among the enabling technologies, visible light communication (VLC) represents a low cost solution in the short term. In spite of the fact that vehicular communications cannot rely on the sole VLC due to the limitation provided by the light which allows communications in visibility only, VLC can however be considered to complement other wireless communication technologies which could be overloaded in dense scenarios. In this paper we evaluate the performance of VLC connected vehicles when urban crowd sensing is addressed and we compare the performance of sole vehicular visible light networks with that of VLC as a complementary technology of IEEE 802.11p. Results, obtained through a realistic simulation tool taking into account both the roadmap constraints and the technologies protocols, help to understand when VLC provides the major improvement in terms of delivered data varying the number and position of RSUs and the FOV of the receiver

    Vehicular Visible Light Networks for Urban Mobile Crowd Sensing

    No full text
    Crowd sensing is a powerful tool to map and predict interests and events. In the future, it could be boosted by an increasing number of connected vehicles sharing information and intentions. This will be made available by on board wireless connected devices able to continuously communicate with other vehicles and with the environment. Among the enabling technologies, visible light communication (VLC) represents a low cost solution in the short term. In spite of the fact that vehicular communications cannot rely on the sole VLC due to the limitation provided by the light which allows communications in visibility only, VLC can however be considered to complement other wireless communication technologies which could be overloaded in dense scenarios. In this paper we evaluate the performance of VLC connected vehicles when urban crowd sensing is addressed and we compare the performance of sole vehicular visible light networks with that of VLC as a complementary technology of IEEE 802.11p. Results, obtained through a realistic simulation tool taking into account both the roadmap constraints and the technologies protocols, help to understand when VLC provides the major improvement in terms of delivered data varying the number and position of RSUs and the FOV of the receiver
    corecore