6,769 research outputs found

    Steady-states and kinetics of ordering in bus-route models: connection with the Nagel-Schreckenberg model

    Full text link
    A Bus Route Model (BRM) can be defined on a one-dimensional lattice, where buses are represented by "particles" that are driven forward from one site to the next with each site representing a bus stop. We replace the random sequential updating rules in an earlier BRM by parallel updating rules. In order to elucidate the connection between the BRM with parallel updating (BRMPU) and the Nagel-Schreckenberg (NaSch) model, we propose two alternative extensions of the NaSch model with space-/time-dependent hopping rates. Approximating the BRMPU as a generalization of the NaSch model, we calculate analytically the steady-state distribution of the {\it time headways} (TH) which are defined as the time intervals between the departures (or arrivals) of two successive particles (i.e., buses) recorded by a detector placed at a fixed site (i.e., bus stop) on the model route. We compare these TH distributions with the corresponding results of our computer simulations of the BRMPU, as well as with the data from the simulation of the two extended NaSch models. We also investigate interesting kinetic properties exhibited by the BRMPU during its time evolution from random initial states towards its steady-states.Comment: Accepted for publication in EPJ

    Cluster formation and anomalous fundamental diagram in an ant trail model

    Get PDF
    A recently proposed stochastic cellular automaton model ({\it J. Phys. A 35, L573 (2002)}), motivated by the motions of ants in a trail, is investigated in detail in this paper. The flux of ants in this model is sensitive to the probability of evaporation of pheromone, and the average speed of the ants varies non-monotonically with their density. This remarkable property is analyzed here using phenomenological and microscopic approximations thereby elucidating the nature of the spatio-temporal organization of the ants. We find that the observations can be understood by the formation of loose clusters, i.e. space regions of enhanced, but not maximal, density.Comment: 11 pages, REVTEX, with 11 embedded EPS file

    Statistical Physics of Vehicular Traffic and Some Related Systems

    Full text link
    In the so-called "microscopic" models of vehicular traffic, attention is paid explicitly to each individual vehicle each of which is represented by a "particle"; the nature of the "interactions" among these particles is determined by the way the vehicles influence each others' movement. Therefore, vehicular traffic, modeled as a system of interacting "particles" driven far from equilibrium, offers the possibility to study various fundamental aspects of truly nonequilibrium systems which are of current interest in statistical physics. Analytical as well as numerical techniques of statistical physics are being used to study these models to understand rich variety of physical phenomena exhibited by vehicular traffic. Some of these phenomena, observed in vehicular traffic under different circumstances, include transitions from one dynamical phase to another, criticality and self-organized criticality, metastability and hysteresis, phase-segregation, etc. In this critical review, written from the perspective of statistical physics, we explain the guiding principles behind all the main theoretical approaches. But we present detailed discussions on the results obtained mainly from the so-called "particle-hopping" models, particularly emphasizing those which have been formulated in recent years using the language of cellular automata.Comment: 170 pages, Latex, figures include

    A cellular-automata model of flow in ant-trails: non-monotonic variation of speed with density

    Get PDF
    Generically, in models of driven interacting particles the average speed of the particles decreases monotonically with increasing density. We propose a counter-example, motivated by the motion of ants in a trail, where the average speed of the particles varies {\it non-monotonically} with their density because of the coupling of their dynamics with another dynamical variable. These results, in principle, can be tested experimentally.Comment: IOP style LATEX, 4 embedded EPS figures, Final published version. Journal Ref: J. Phys.A 35, L573 (2002

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Simulating the Impact of Traffic Calming Strategies

    Get PDF
    This study assessed the impact of traffic calming measures to the speed, travel times and capacity of residential roadways. The study focused on two types of speed tables, speed humps and a raised crosswalk. A moving test vehicle equipped with GPS receivers that allowed calculation of speeds and determination of speed profiles at 1s intervals were used. Multi-regime model was used to provide the best fit using steady state equations; hence the corresponding speed-flow relationships were established for different calming scenarios. It was found that capacities of residential roadway segments due to presence of calming features ranged from 640 to 730 vph. However, the capacity varied with the spacing of the calming features in which spacing speed tables at 1050 ft apart caused a 23% reduction in capacity while 350-ft spacing reduced capacity by 32%. Analysis showed a linear decrease of capacity of approximately 20 vphpl, 37 vphpl and 34 vphpl when 17 ft wide speed tables were spaced at 350 ft, 700 ft, and 1050 ft apart respectively. For speed hump calming features, spacing humps at 350 ft reduced capacity by about 33% while a 700 ft spacing reduced capacity by 30%. The study concludes that speed tables are slightly better than speed humps in terms of preserving the roadway capacity. Also, traffic calming measures significantly reduce the speeds of vehicles, and it is best to keep spacing of 630 ft or less to achieve desirable crossing speeds of less or equal to 15 mph especially in a street with schools nearby. A microscopic simulation model was developed to replicate the driving behavior of traffic on urban road diets roads to analyze the influence of bus stops on traffic flow and safety. The impacts of safety were assessed using surrogate measures of safety (SSAM). The study found that presence of a bus stops for 10, 20 and 30 s dwell times have almost 9.5%, 12%, and 20% effect on traffic speed reductions when 300 veh/hr flow is considered. A comparison of reduction in speed of traffic on an 11 ft wide road lane of a road diet due to curbside stops and bus bays for a mean of 30s with a standard deviation of 5s dwell time case was conducted. Results showed that a bus stop bay with the stated bus dwell time causes an approximate 8% speed reduction to traffic at a flow level of about 1400 vph. Analysis of the trajectories from bust stop locations showed that at 0, 25, 50, 75, 100, 125, 150, and 175 feet from the intersection the number of conflicts is affected by the presence and location of a curbside stop on a segment with a road diet

    Collective traffic-like movement of ants on a trail: dynamical phases and phase transitions

    Full text link
    The traffic-like collective movement of ants on a trail can be described by a stochastic cellular automaton model. We have earlier investigated its unusual flow-density relation by using various mean field approximations and computer simulations. In this paper, we study the model following an alternative approach based on the analogy with the zero range process, which is one of the few known exactly solvable stochastic dynamical models. We show that our theory can quantitatively account for the unusual non-monotonic dependence of the average speed of the ants on their density for finite lattices with periodic boundary conditions. Moreover, we argue that the model exhibits a continuous phase transition at the critial density only in a limiting case. Furthermore, we investigate the phase diagram of the model by replacing the periodic boundary conditions by open boundary conditions.Comment: 8 pages, 6 figure
    • …
    corecore