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Abstract 

 

URBAN FREIGHT DISTRIBUTION AND INNOVATIVE LAST MILE 

SOLUTIONS FROM A TRAFFIC PERSPECTIVE 

 

Michele Simoni, PhD 

The University of Texas at Austin, 2019 

 

Supervisor:  Christian Claudel 

 

Urban population growth, the rise of e-commerce, and the increased need for economically and 

environmentally sustainable solutions represent urban freight distribution’s biggest challenges. 

Traffic and city logistics are often two sides of the same coin, as congestion affects city freight 

movements and vice versa.  

For this reason, it is important to develop comprehensive mobility and traffic management 

solutions that consider both systems. During the last decade, technology improvements in wireless 

communication, computational and sensing technologies, have paved the way to a series of 

mobility and transportation options (e.g., crowdshipping and driverless vehicles) that could 

transform the landscape of last-mile delivery. The main contribution of this dissertation consists 

of modeling urban freight impacts on traffic and investigating the potential implications of 

innovative last-mile solutions. 

The first part of this dissertation focuses on the feedback between freight movements and traffic, 

taking into consideration the impact of passenger vehicles on commercial vehicles, and vice versa. 

In order to achieve this goal, it is necessary to model trucks’ movements and loading/unloading 

operations with ad-hoc traffic simulations. Most of existing research has focused on analytical, 

static, or microscopic models, that either lack accuracy or scalability. Hence, this dissertation 

creates algorithms that couple existing macroscopic traffic flow models with the microscopic 

behavior of delivery vehicles. This issue is investigated both at single-link and network levels, by 
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means of a suitable simulation framework. In both cases, applications of the modeling approach 

for freight traffic and freight demand management are shown.  

In the second part of this dissertation the potential impacts of last-mile delivery solutions are 

evaluated using the developed simulation framework. First, the impacts of alternative City 

Logistics solutions, such as off-peak deliveries and access restrictions are investigated. Then, the 

developed modeling framework is extended to investigate a crowdsourced service for parcel 

deliveries. The effects on traffic and emissions are investigated for the adoption of crowdshipping 

by carriers delivering parcels in the city center of Rome, Italy. The externalities associated with 

several strategic (chosen mode) and operational (detour length, parking behavior, and traffic 

conditions) aspects of this service are analyzed by means of simulation in realistic settings. 

Some results allow preliminary considerations about the effects of last-mile delivery solution that 

can been confirmed in other studies. Other findings, instead, are in line with studies from previous 

literature that adopted different approaches. The practice of off-peak deliveries, consisting in 

shifting part of the trips and operations to less congested hours of the day (typically evening and 

night) has proved to be an effective solution to freight-related congestion in urban settings. 

Restricting from deliveries specific links or sets of links, instead, could be beneficial only in some 

situations. Alternative crowdshipping implementation features, such as the transportation mode 

choice, but also operational aspects (such as availability of parking, optimization of existing trips, 

and implementation during off-peak hours) can also considerably influence the final traffic and 

emissions impacts of this service. 
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1. INTRODUCTION 

1.1 BACKGROUND 

Urban freight transportation plays a fundamental role in the economic development of urban 

regions, but, at the same time, threatens their livability given the increased road congestion, 

environmental impacts, and energy consumption. 

Due to the many stakeholders involved and their often conflicting objectives, developing 

sustainable urban freight transportation systems presents several challenges. On the one hand, 

private stakeholders, like carriers, shippers, and customers, aim at reducing the operational costs 

while maintaining a high level of service. The last mile of the distribution can account for up to 

50% of the total distribution costs (Dablanc and Rodrigue, 2017), and market phenomena like e-

commerce and same-day delivery services put additional pressure on carriers to satisfy customers’ 

expectations. On the other hand, public authorities seek to reduce the negative externalities of 

freight movements, including congestion and pollution.  

Freight masterplans and regulations for more sustainable distribution are becoming a common 

practice in European and American cities. However, it is only since the early 2000s that an 

emerging research field referred to as City Logistics has been formally investigating “the process 

of totally optimizing the logistics and transport activities by private companies in urban areas while 

considering the traffic environment, traffic congestion and energy consumption” (Taniguchi, 

2001). Different studies have proposed a series of initiatives, including new regulations, 

infrastructure improvements, and measures concerning space and time of delivery operations 

(Taniguchi and Thompson, 2014). 

A particularly critical challenge in the City Logistics field is existing city infrastructure’s  lack of 

road and parking capacity to accommodate freight transportation, and the resulting high congestion 

levels. Traffic and freight distribution are often two sides of the same coin, as congestion affects 

city freight movements and vice versa. In fact, it is well known that urban freight movements have 

a negative impact on the transportation network because of their lower speed, reduced 
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maneuverability, and frequent stops for deliveries. Double-parking is a common practice in the 

commercial business districts of major cities and it would probably continue growing with 

increasing demand for residential deliveries (Chen et al., 2017). Conversely, high levels of traffic 

delay truck deliveries and compromise the performance and reliability of freight distribution, 

ultimately increasing the overall costs of the carriers (and the final shipping costs for consumers). 

During the last decade, technology improvements in wireless communication, computational, and 

sensing technologies have paved the way to a series of applications aimed at providing a more 

efficient transportation system (e.g. dynamic route guidance, real-time traffic management, and 

congestion pricing) and supply chain (e.g. dynamic vehicle routing and fleet and inventory 

management) labeled as Intelligent Transportation Systems (ITS). In addition, recent technological 

progress in automated vehicles (e.g. driverless vehicles, robots, unmanned aerial vehicles) could 

also bring changes in the current delivery models and transform the landscape of last-mile delivery. 

Finally, the success of sharing economy models is creating the basis for alternative delivery 

frameworks based on crowdsourcing and cooperation among different carriers and shippers. 

In order to properly assess the impacts of freight movements on traffic (and vice versa) and 

possible City Logistics solutions, it is crucial to explicitly account for the main features of traffic 

and congestion (hindrance of traffic, temporary capacity reductions, queues formation and 

propagation). The dynamic nature of the above-mentioned emerging technologies and 

opportunities especially calls for adequate analysis and modeling tools. 

The focus of this dissertation is on models and algorithms for freight traffic and operations, and 

their applications in the evaluation and optimization of City Logistics solutions. This work places 

itself at the intersection of two different research areas: the main theoretical component of the 

presented framework is based on the Traffic Flow Theory, whereas its capabilities and potential 

applications fit well in the field of City Logistics.  

1.2 RESEARCH OBJECTIVES AND MAIN CONTRIBUTIONS 

The main objective of this dissertation is to develop tools for traffic simulation of urban freight 

distribution, and to employ them for the evaluation and optimization of City Logistics measures. 
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In order to achieve these goals, first it is necessary to reproduce freight movements and 

loading/unloading operations with ad hoc traffic simulations. Microscopic models reproduce 

traffic by simulating each individual vehicle and its driving behavior in relation to others. They 

are well-suited for investigating phenomena, such as overtaking, lane-changing, and merging, and 

hence complex traffic and infrastructure configurations. In macroscopic models, traffic is 

reproduced as a fluid by means of variables, such as density (accumulation), flow (throughput), 

and average speed, and behaves according to the laws of physics. They are well-suited for 

investigation of large networks and situations where traffic is mainly regulated by signals. There 

is less agreement about the definition of mesoscopic models, where different features from 

macroscopic and microscopic models are adopted in order to overcome some of their limitations.  

In the realm of macroscopic traffic models, where traffic behaves like a fluid, one of the main 

challenges of freight traffic simulation consists of coupling existing macroscopic traffic flow 

models with the microscopic behavior of delivery vehicles. In this dissertation, this is done by 

developing hybrid algorithms that pair Partial Differential Equations (PDEs) with Ordinary 

Differential Equations (ODEs). The algorithms are based on the Lighthill-Whitham-Richards 

(LWR) model, and on the theory of moving and fixed bottlenecks. For an efficient solution in 

simulations on urban networks the semi-analytical Lax-Hopf method for for solving the LWR 

model is extended. 

Finally, the modeling framework can be employed in the study of two innovative city logistics 

solutions for the last-mile distribution. The first application consists of the analysis of traffic and 

environmental impacts deriving from the introduction of a “crowdshipping service.” This type of 

initiative, which is typically an internet-based service, allows individuals or carriers who walk, 

bike, or drive to a certain area to perform delivery on their way. In this context, the developed 

simulation model is used to compare the network effects and operational performance of traditional 

deliveries with alternative implementations of the crowdshipping concept. The second application 

integrates delivery robots in the last-mile distribution of parcel deliveries. In this case, the 

developed simulation model is integrated into an optimization problem to identify the optimal 
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usage of this technology for carriers. In addition, the simulation framework is used to identify 

potential improvements and threats for the city in terms of traffic and environmental impacts.  

At the theoretical level, this research is intended to provide advanced tools to efficiently and 

accurately reproduce freight movements at link and network level within macroscopic traffic 

models. Most previous work has focused on analytical, static, or microscopic/mesoscopic models. 

The analytical or static models are not precise, and only offer an approximate description of traffic, 

which is not sufficiently accurate to perform traffic optimization and fleet management. The 

microscopic formulations of mixed flows (regular vehicles and delivery vehicles), while accurate, 

are not computationally efficient, and for this reason their usage is typically limited to small case 

studies. 

At the practical level, this research aims to investigate emerging urban freight distribution practices 

and City Logistics schemes with a particular focus on their effects on traffic. The solutions 

investigated in this dissertation have become only recently a topic of research in the academic 

literature. Furthermore, the adopted approach allows for accurate analyses of different aspects, 

such as the actual impacts on traffic and on carriers’ operations. To the best of our knowledge, this 

is a novel approach as most of the existing literature in the field has mainly focused on either the 

traffic or the supply chain. 

1.3 ORGANIZATION 

This dissertation is organized as follows (Figure 1): 

Chapter 1: Introduction. This chapter introduces the scope of this dissertation and the rationale 

behind it. The main research objectives and contributions are identified. The outline of the 

dissertation is described. 

Chapter 2: Future challenges and opportunities for urban freight distribution. This chapter 

describes the context of this research. It provides an overview of trends and emerging technologies 

in urban freight distribution, their implications for different stakeholders, and their possible 

impacts on mobility and traffic.  
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Chapter 3: A fast simulation algorithm for multiple moving bottlenecks and applications in 

urban freight traffic management. Slow vehicles, such as trucks and buses (moving bottlenecks) 

are a major source of congestion and in order to reduce traffic delays, dedicated traffic management 

solutions could be implemented. Several methods have been proposed in the field of traffic flow 

theory to compute solutions associated with the presence of moving bottlenecks. One typical 

challenge encountered in previous studies consists in identifying and modeling features regarding 

their speed, their discharge flow, and the extent of the queue held back. In this chapter, a semi-

analytical approach based on the LWR model for computing solutions associated with an arbitrary 

number of moving bottlenecks with different features is presented. The problem of computing 

solutions associated with multiple moving bottlenecks requires solving a coupled ODE/PDE 

system, and has never been investigated before in the case of multiple bottlenecks. The 

computational framework proposed is fast and yields exact solutions. It is highly suitable for 

optimization problems where a large number of traffic estimations need to be performed. Hence, 

this algorithm is applied to evaluate solutions in two traffic management strategies for trucks: first, 

joint coordination of traffic lights and trucks’ departures on an arterial corridor and, second, 

parking-loading curbside management strategy for reducing delays associated with trucks’ 

deliveries. An article based on this chapter has been published with the title “A fast simulation 

algorithm for multiple moving bottlenecks and applications in urban freight traffic management” 

on Transportation Part B: Methodological. 

Chapter 4: A simulation framework for modeling urban freight operations impacts on traffic 

networks. This chapter extends the previous work, where freight movements were simulated on a 

single link, to urban networks. A traffic simulation framework is developed to reproduce freight 

movements in urban settings with a particular focus on the phenomenon of double-parking. The 

traffic simulation framework still relies on the LWR model and on the theory of moving and fixed 

bottlenecks to reproduce delivery operations at the curbside. The traffic component of the model 

can be coupled with a generic parking model. In the traffic simulation, a novel version of the Lax-

Hopf formula is used to perform efficient and accurate simulations of large networks. Given these 

characteristics, the simulation framework proposed would be highly suitable for the evaluation and 
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development of City Logistics solutions  at the network level. Hence, as a secondary contribution, 

this chapter explores the impacts (in terms of traffic and carriers’ efficiency) of two possible 

sustainable logistic strategies: shifting deliveries to off-peak hours, and restricting certain critical 

streets from delivery operations. . An article based on this chapter has been published with the title 

“A simulation framework for modeling urban freight operations impacts on traffic networks” on 

Simulation Modelling Practice and Theory. 

 

Chapter 5: Study of innovative logistics problems. An innovative logistic solution investigated 

consists of crowdshipping. This service allows individuals to undertake shipping jobs during their 

personal trips. Consumers could seek this service for particular needs, such as same-day deliveries 

when “traditional” independent carriers are not able to fulfill them or when their costs are too high. 

Crowdshipping is still a relatively new concept and it could be implemented in different ways: 

drivers could modify the routes to pick up and drop off packages; public transport users could 

carry along packages on their trips and drop them off at lockers installed around the stations, and 

so on. Although some benefits in terms of reduced pollution and congestion could be obtained by 

replacing dedicated freight trips, the impacts of crowdshipping are unclear and depend on several 

factors, such as the transport mode used, the match between demand and supply, and possible 

rebound effects. In this solution, the developed simulation frameworks is employed to evaluate 

different implementation alternatives. A paper based on this chapter with the title “Potential 

impacts of crowdshipping services: a simulation-based evaluation” is under review in 

Transportation. 

Chapter 6: Conclusion. In the final chapter, the findings and contributions of this dissertation are 

summarized and some considerations about future research are presented. 
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Figure 1: Dissertation schematics 
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2. OUTLOOK ON FUTURE URBAN FREIGHT DISTRIBUTION  

In this chapter, first the issue of last-mile freight distribution and the concept of City Logistics 

(Section 2.1) are introduced. Then some of the upcoming challenges (Section 2.2) and 

opportunities (Section 2.3) are identified for the different stakeholders based on the ongoing 

emerging trends and technologic changes.  

2.1 THE LAST-MILE ISSUE  

Last-mile delivery represents the final leg of urban freight movements to the end consumer. The 

final destination could be a retail store, a restaurant, a dweller, or a pickup station. These 

movements typically occur between distribution center and a final customer, although new online 

retail and parcel return services have diversified the possible combinations of origins and 

destinations. 

Overall, urban freight distribution involves a very large variety of goods, businesses, and 

customers. However, the nature of the delivery process that is characterized by different 

requirements (time and costs) and constraints (dedicated mode and shared infrastructure) is at the 

root of a series of issues common to moving goods in cities. Specifically, the fact that the different 

stakeholders involved often have conflicting objectives poses a series of challenges in identifying 

effective collaborative solutions (Rodrigue et al., 2009). 

Public stakeholders (city authorities, city planners, public transport providers) whose first interest 

is improving social welfare, aim at reducing the negative impacts of freight movements like 

pollution, congestion, noise, and safety without penalizing the economic activities of cities. Private 

stakeholders (carriers, shippers, customers) whose primary goal is economic efficiency, aim at 

improving the quality of distribution services by reducing time and costs. 

Since the late 1990s, a new research field at the intersection of economics, policy-making, 

engineering, and operations research called City Logistics has been exploring solutions: “For 

totally optimizing the logistics and transport activities by private companies in urban areas while 

considering the traffic environment, the traffic congestion and energy consumption within the 

framework of a market economy” (Taniguchi, 2001). Consequently, in the last couple of decades 
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a series of initiatives including new regulations, infrastructure improvements, and measures 

concerning sharing space and time have been adopted throughout the world, especially Europe and 

Japan. The reader is referred to Wolpert and Reuter (2012) for an extensive review of City 

Logistics studies. 

While on the one hand current demographic and market trends might worsen the last-mile of 

freight distribution, on the other hand, technologic advances offer the opportunity to develop 

newer, more sustainable, and more efficient delivery systems.    

2.2 UPCOMING CHALLENGES FOR PUBLIC AND PRIVATE STAKEHOLDERS 

Two big challenges for urban freight distribution consist of the increase of urbanization and the 

expansion of e-commerce. Consequences, such as increased freight traffic and pollution will likely 

affect the livability of cities and the performance of logistics’ key players. 

In 2014, more than half of the world population (54%) lived in urban areas rather than in rural 

areas (United Nations, 2014). By 2045, the urban population is projected to increase by 1.5 times 

(World Bank, 2018). The pace of growth varies across different regions of the world, with Asia 

and Africa in the first place because of the highest population growth. Nevertheless, European and 

North American urban populations will likely increase to 70-80% (European Environmental 

Agency, 2017; United Nations, 2014). An interesting aspect to consider is the concentration of 

new city dwellers in medium-sized and large urban areas, eventually leading to the development 

of mega-cities. By 2030, the number of large metropolitan areas with more than 10 million 

inhabitants is expected to become 41 (compared to the current 28) (United Nations, 2014). For 

City Logistics and, in particular, for public stakeholders, such rapid and unplanned growth of urban 

areas represents a serious threat to the sustainability of freight distribution. An increase of demand 

for goods and services in cities that are already burdened by scarce road capacity and parking is 

certainly no good news. In general, unless serious solutions are found for the development of 

infrastructure and policy measures, congestion and pollution levels will not improve in growing 

cities, partly because of the increase of freight traffic.   
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Another threat to sustainable urban freight distribution is represented by the rise of e-commerce 

and door-to-door services that are determining significant changes in the delivery process. Overall, 

more direct-to-consumer deliveries are likely to cause lower freight consolidation because of the 

smaller loads and more frequent deliveries (Taniguchi and Kakimoto, 2003). This shift would 

inevitably generate a worsening of traffic and parking conditions, given the already limited road 

network capacity (even though some car shopping trips would be replaced). In addition, as recent 

research highlights (Visser et al., 2014; Chen et al., 2017), freight traffic and parking issues might 

arise also in residential areas that could be harder to control by means of regulations (e.g. restricted 

traffic areas and times). The growth of e-commerce at double-digit rates (around 10% annually in 

countries like Germany and the US, and more than 25% in Asian countries like China and India 

according to Capgemini (2013)) calls for action in the near future to address the efficiency of the 

process and to transfer e-commerce’s negative externalities to companies. 

The phenomenon of online selling is revealing new challenges for private stakeholders as well, 

especially for carriers and shippers, as they are faced with increasing last-mile distribution costs. 

Because of its low efficiency, the last-mile represents the weak link of the supply chain, accounting 

for up to 28% of the total costs (Rodrigue et al., 2009). There are several reasons behind the high 

costs of the last mile of transportation (Figure 2), such as low speeds, traffic congestion, lack of 

parking, and low consolidation.  In the case of parcel deliveries, companies are also dealing with 

the costs related to customers’ availability (failed deliveries cost £780 million in 2016, in the UK 

(IMRG, 2016)) and unpredictability (at least 30% of all products ordered online are returned in the 

US, according to Invesp’s infographic (Invesp, 2016)). These issues are even more prominent for 

online shopping companies since customers “have an increasingly complex set of expectations 

regarding speed, flexibility, security and cost of delivery” (Lee et al., 2016). Several companies 

are struggling to provide high levels of delivery service while keeping their prices as low as 

possible (or even free), in order to gain customers’ loyalty and compete with other companies and 

traditional “brick-and-mortar” stores. Different surveys have highlighted that a large portion of 

customers not only prioritize speedy deliveries, but also have a strong preference for free shipping 

services (Deloitte, 2015; Joerss et al., 2016). Because of the demanded high standards, several e-
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commerce businesses are facing higher and higher shipping costs. For example, in 2016, Amazon 

invested $7.2 billion in shipping with an increase of 40% with respect to the previous year 

investment (Bishop, 2017). In future years, the key players will need to improve their last-mile 

delivery process, not only to beat the other competitors, but also to guarantee the financial 

sustainability of their business model.  

 

 

Figure 2: Delivery costs of the last mile (source:Honeywell, 2018) 

 

2.3 UPCOMING OPPORTUNITIES FOR PUBLIC AND PRIVATE STAKEHOLDERS 

Freight transport could benefit from the introduction of new business models, technologies, and 

delivery frameworks based on advances in information and communication technologies. New 

sharing economy models (Section 2.3.1) and automated technologies (Section 2.3.2) could be 

adopted by carriers and shippers, in addition to Intelligent Transport System solutions (2.3.3). 
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2.3.1 Sharing economy models 

The sharing economy allows novel delivery approaches by interfacing customers, carriers, and 

shippers to meet their needs, particularly for goods bought online (McKinnon et al., 2015). 

For example, logistics companies might decide to share their assets in terms of infrastructure and 

fleet (with available capacity) in cooperation with others. The possibility of utilizing spare 

capacities might result in higher consolidation and eventually a lower number of freight trips. For 

this reason, this solution is receiving more and more attention in the research field (Krajewska et 

al., 2008; Audy et al., 2011; Wang and  Kopfer, 2014). 

The success and expansion of companies like Uber, Lyft, and Didi raises questions about the 

possibility of integrating last-mile freight transportation with passenger transportation. While such 

a combination already exists in long-haul transportation (i.e., by sea, air, and rail), it does not 

usually occur in the short range. Although the utilization of regular passenger modes for freight 

movements is not entirely new (e.g., CityCargo Project in Amsterdam and Yamato in Kyoto), the 

usage of internet platforms can considerably harness this process and allow for higher 

optimization. For example, the people and freight could either travel together or at different times, 

when vehicles are not used by anybody (Savelsbergh and Van Woensel, 2016). The 

implementation of such synergies has some potential for improving the efficiency of delivery 

operations and for reducing dedicated freight trips. However, the final outcomes depend on a series 

of aspects, such as the level of service provided and integration with existing trips (minimization 

of detours), and the density of demand. Some initial experiments have been run by partnering 

companies like Google Shopping Express and Uber and DHL Parcel and Amazon (Blair, 2017), 

and the first research studies have been investigating conceptual and mathematical models behind 

this type of delivery frameworks (Li et al., 2014; 2016) 

The idea of utilizing traditional passenger modes, such as private vehicles, transit, or bike, and 

outsourcing services by utilizing others’ spare capacity are combined in the concept of 

crowdshipping. In crowdshipping, individuals traveling to a certain area can perform delivery on 

their way. In this case, businesses could rely on people to accomplish part of their deliveries. Some 

recent successful examples of crowdsourcing are the food delivery service UberEats, and same-
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day delivery platform Deliv. This framework seems very suitable for companies dealing with 

fluctuating demand and that want to leverage easily accessible, cheaper, and less regulated labor 

(Joerss et al., 2016). From the perspective of logistics companies, this solution seems promising 

for improving efficiency and reducing costs (Miller et al., 2017), although it is uncertain whether 

it could easily scale up to large shares of the freight distribution market (especially for bigger or 

more expensive items). From the perspective of public authorities, crowdshipping could be 

beneficial depending on the transport modes utilized by the crowd and on the integration with 

existing transport flows (Punel and Stathopoulos, 2017). In order for that to become a sustainable 

option, dedicated freight trips would need to be replaced by public transit, walking, and bike trips 

(Marcucci et al., 2017). 

2.3.2 Automation 

Automation will likely change the freight industry thanks to the introduction of self-driving 

vehicles, drones, and robots. 

There are different opinions on the time when autonomous vehicles (AVs) will become publicly 

available. Nevertheless, it is a fact that major car manufacturers and technology companies are 

making considerable investments to commercialize partially autonomous vehicles within the next 

ten years (Muio, 2017). Autonomous driving is going to change significantly people’s mobility, 

and researchers’ interest in AVs’ impacts on travel behavior and traffic conditions is currently 

strong. The interested reader can refer to Milakis et al. (2017) for a relatively comprehensive 

literature review. Still, little investigation has been done on the possible applications of automation 

to urban freight distribution. Semiautonomous ground vehicles could be used for deliveries as well 

(Joerss et al., 2016), with a delivery person still needed on the vehicle performing other tasks. It is 

unclear, however, how this person could move around the truck. A possible alternative could be 

using autonomous cars as couriers for parcel deliveries. The packages could be placed in different 

compartments of the vehicle that could be unlocked by the customers at destination with a unique 

code (DHL, 2014). Along the same lines, some companies are testing a feature that allows control 

of access to car trunks (Etherington, 2016). This technology could be used by companies to deliver 
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packages to the trunks of customers’ cars (DHL, 2015). Although the adoption of AVs might lower 

shipping costs (by cutting personnel), it is uncertain whether it would lead to increased or lowered 

levels of congestion and pollution. 

Drones or Unmanned Aerial Vehicles (UAVs) could also improve the final leg of delivery 

operations by delivering small packages in the last mile. The use of UAVs offers several 

advantages over traditional vehicles. First, drones would be able to perform faster deliveries as 

they are not constrained by road infrastructure and congestion. They can also more easily access 

difficult destinations like rural areas and difficult terrains. Since drones represent an appealing 

opportunity to reduce the costs of the last leg of supply chains, different companies in the field 

(Amazon, UPS, DHL, and Google) have been testing drone-based solutions in recent years (Hern, 

2014; Kim, 2016). On the other hand, deliveries by drones would probably entail only small parcel 

movements because of their range and weight restriction. Furthermore, their profitability still 

needs to be thoroughly investigated. For public authorities, drones could help alleviate the 

pollution and congestion externalities of urban freight transport by replacing road transportation 

(Stolaroff et al., 2018). 

Another automation innovation that could change the landscape of last-mile distribution is robots. 

Different companies (Starship, Dispatch) are exploring the possibility of using robots to carry 

parcels, groceries, and food. Robots could be dispatched from hubs, retail outlets or restaurants 

and once the customers are reached, unlock their compartments by means of codes. Similarly to 

drones, robots could reduce the environmental and congestion impacts of truck deliveries.  Unlike 

drones, robots are designed to travel on sidewalks and bike lanes, at speeds between 5 and 10 

kilometers per hour (Lee et al., 2016). For this reason, their range would be more limited. Also, 

they might not be able to operate in crowded areas (Markoff, 2015). On the other hand, thanks to 

their higher capacity they could be used for larger orders or for more deliveries. From a safety and 

regulation perspective, they also might be easier to employ given their small size and low speed 

and the fact that they travel on the ground (Pettitt, 2015). 
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2.3.3 Large Data and Intelligent Transport Systems 

The availability of a large amount of information from different sources and the possibility to 

communicate it in real time has prepared the ground for the adoption of several Intelligent 

Transport Systems (ITS) solutions (Speranza, 2018). Some ITS could be implemented by public 

authorities to improve urban freight traffic (traffic management systems), while others could be 

utilized by shippers and carriers to optimize their supply chain process (freight transport 

management) (Allen, Browne, & Thorne, 2007). For example, based on real-time traffic 

conditions, city authorities could implement traffic control measures targeted at freight flows (e.g. 

managing their access and paths, varying signal timings). Similarly, information about parking 

availability could be used to improve delivery operations. Traffic and demand data could be 

employed as well by carriers for dynamic routing in order to reduce their delivery times and 

improve their reliability. Furthermore, quick communication between shippers, carriers, and 

customers would allow for more task-courier matching and scheduling of the delivery process. 

Finally, the large amounts of data about demand could become a valuable source for forecasts and 

planning of operations (fleet management, efficient inventory management). 

Overall, ITS solutions can reduce traffic and congestion due to freight movements and, at the same 

time, improve the efficiency of delivery operations. The main challenges for the implementation 

of ITS are: the quick collection and analysis of large volumes of information, for which state-of-

the-art analytics methods will be required; and the employment of dynamic and highly accurate 

data in the decision making process, for which advanced optimization methods will be needed. 
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3. A FAST ALGORITHM FOR MULTIPLE MOVING BOTTLENECKS 

AND APPLICATIONS IN URBAN FREIGHT TRAFFIC MANAGEMENT 

 

Please cite this chapter as: Simoni, M. D., & Claudel, C. G. (2017). A fast simulation algorithm for multiple 

moving bottlenecks and applications in urban freight traffic management. Transportation Research Part B: 

Methodological, 104, 238-255. 

The authors confirm the contribution to the paper as follows: Study conception and design: Simoni, M.D., 

Claudel, C.G.; Data collection: Simoni, M.D.; Analysis and interpretation of results: Simoni, M.D.; 

Manuscript preparation: Simoni, M.D., Claudel, C.G. 

3.1 INTRODUCTION 

In traffic flow theory, different typologies of “slow” vehicles (or platoons) can be modeled as 

“moving bottlenecks”.  These obstructions in traffic streams are usually associated with the 

presence of buses in urban traffic, and trucks or slower vehicles on highways. All these situations 

are characterized by a partial blockage of the road that causes a capacity reduction (typically the 

right lane in right hand driving countries). The concept of moving bottleneck can be extended to 

fixed bottlenecks, which represent static (spatially) and time varying capacity restrictions that can 

result, for example, from traffic lights or traffic incidents. 

Some main challenges of modeling moving bottlenecks concern identifying and modeling features 

regarding their speed (depending on the traffic conditions and on the maximum speed of the 

vehicle), their discharge flow (maximum rate at which vehicles overtake), and the extent of the 

queue held back. Several studies have highlighted the importance of the effects of moving 

bottlenecks on traffic (Munoz and Daganzo, 2002; Daganzo and Laval, 2005) and have developed 

methodologies to include them into existing traffic models. In 1992, Gazis and Herman developed 

a model based on the conservation of flow, unconditional existence of the flow-density relation, 

and independence of capacity state from the bottleneck state. Newell (1993; 1998) subsequently 

proposed the first complete formulation based on the Lighthill–Whitham–Richards (LWR) model 

in which the moving bottleneck is assumed to behave as a scaled-down version of the freeway’s 

fundamental diagram not influenced by the bottleneck speed. In recent years, Munoz and Daganzo 
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(2002), Leclerq et al. (2004), and Daganzo and Laval (2005) have proposed more comprehensive 

formulations of the moving bottleneck problem. Other studies have focused on numerical methods 

to solve the fixed and moving bottleneck problems within the LWR model (Lebacque et al., 1998; 

Giorgi et al., 2002; Leclercq, 2007; Laval and Leclerq, 2008). Referring to the “Three-phase traffic 

theory,” Kerner and Klenov (2010) thoroughly explored features of moving bottlenecks,, such as 

the critical speed at which traffic breaks down. Moving bottlenecks have also been studied in the 

field of applied mathematics by Lattanzio et al. (2011), Gasser et al. (2013), and Delle Monache 

and Goatin (2014; 2016), where coupled PDE-ODE models are used to reproduce the dynamics 

between car traffic flows and slow vehicles.  

To date, not many studies have developed methods to simulate an arbitrary number of moving 

bottlenecks. Daganzo and Laval (2005), and Laval and Leclercq (2008) modeled multiple moving 

bottlenecks (with exogenous passing rates) by means of a numerical method based on the the 

Kinematic Waves (KW) theory.  Other studies (Leclerc and Becarie, 2012; Laval and Leclercq, 

2013; Joueiai et al., 2015) have shown how solving the LWR model with different coordinate 

systems (mesoscopic approach) would allow addressing multiple internal boundary conditions. 

However, in these models bottleneck trajectories are assumed to be known in advance. In this 

study, we offer a more general approach that endogenously accounts for the impact of moving 

bottlenecks on surrounding traffic and the converse. Additionally, we provide an efficient 

algorithm that allows the simulation of an arbitrary number of moving bottlenecks associated with 

different maximum speeds. The effects of moving bottlenecks’ stops along the curbside can also 

be incorporated without significant changes in the algorithm. 

To achieve this, we propose a new formulation that computes the parameters associated with 

moving and fixed bottlenecks (trajectories and passing flows) without having to compute the 

complete solution. This method improves computational times by orders of magnitude over 

classical numerical schemes, and does not affect the computational accuracy. 

As previously mentioned, the problem of computing the trajectories and parameters (passing 

flows) associated with moving bottlenecks is not straightforward because bottlenecks both 

influence and are influenced by surrounding traffic. Thus, in order to compute the density map 
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associated with a general problem (involving initial conditions, boundary conditions and 

bottlenecks), it is necessary to simultaneously compute the solution to the LWR model and the 

corresponding trajectories of the bottlenecks (that are initially unknown). Since the solution itself 

affects the trajectories of the moving bottlenecks, this computationally intensive process requires 

us to map the solution on the entire computational domain. 

The algorithm we propose allows, instead, determining the parameters and trajectories of the 

moving bottlenecks without requiring us to compute the solution on the entire computational 

domain. The approach is based on an extension of the semi-analytical solutions to arbitrary 

Hamilton-Jacobi equations introduced in Mazaré et al. (2011). Using semi-explicit solutions, we 

show that the trajectories of an arbitrary number of fixed and moving bottlenecks can be 

simultaneously marched forward in time for a very low computational cost. Indeed, when 

considering piecewise affine initial conditions containing ni “blocks” (intervals over which the 

function is linear), the piecewise affine upstream and downstream boundary conditions containing 

nu and nd blocks respectively, and nb bottlenecks, the future evolution of each bottleneck can be 

computed by at most (ni + nb +2) calculations of explicit functions. Once this set of calculations is 

done, the future evolution of the moving bottleneck is completely determined, in function of the 

difference between the current value of the solution to the Hamilton Jacobi equation along the 

trajectory, and its future value along the predicted trajectory. When this process is marched forward 

in time, it allows one to simultaneously compute the parameters associated with all moving and 

fixed bottlenecks of the problem, and to not have to compute the solution everywhere (solutions 

are only required along the trajectories of the bottleneck, thus greatly reducing the computational 

time required to solve the problem).  

Once identified the parameters and trajectories of all moving and fixed bottlenecks, it is possible 

to use this information to efficiently compute the solution of the problem everywhere using the 

Lax-Hopf algorithm whose computational benefits have been described in Claudel and Bayen 

(2010a). Since the Lax-Hopf algorithm can compute the solution at any point of the space time 

domain using only initial, boundary, and bottleneck data, this approach is well adapted to 
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optimization problems in which we are only interested in knowing the solutions at a limited 

number of points (on which the objective function of the problem depends).  

This algorithm’s very favorable computational error characteristics also render it advantageous. 

The only errors induced by the proposed scheme are errors related to the discretization in time of 

the moving bottleneck trajectories when they enter a different traffic regime, and an approximation 

of the behavior of the bottlenecks around intersections of bottleneck trajectories (if moving 

bottlenecks overtake each other). Non-event-based numerical methods for moving bottleneck 

problems (for example, based on LWR (Leclercq, 2007) or on the Variational Method (Daganzo 

and Laval, 2005)) require discretized moving and fixed bottleneck trajectories, but also use 

approximate solution methods to solve the LWR equation. Event-based methods (, such as the 

wave-front tracking method) can be exact, but require the computation of the solution on the entire 

computational domain (therefore reducing the computational performance in specific applications 

where the solution is only needed at a low number of points). Furthermore, to date, algorithms 

based on wave-front tracking are capable of handling multiple moving bottlenecks only in certain 

scenarios (closed road) and under certain conditions (same features) (Delle Monache and Goatin, 

2016).  

Thanks to these favorable properties, the proposed algorithm could be used to efficiently tackle 

complex traffic estimation and control problems characterized by the presence of several trucks or 

buses. As a main practical contribution of this research, we present the application of the algorithm 

to evaluate two alternative traffic management strategies for trucks in urban settings by using a 

macroscopic traffic flow model. The first consists in the joint coordination of traffic lights and 

trucks departures on an arterial corridor in order to maximize its throughput. The second consists 

in a parking-loading curbside management strategy for reducing delays associated with trucks’ 

deliveries. The first strategy could be employed around large urban freight traffic generators,, such 

as airports, marine ports, and container terminals, but also facilities like shopping malls, hospitals, 

colleges, and universities and government offices (Jaller et al., 2015). The second strategy could 

be implemented in locations characterized by a significant number of deliveries like central 

business districts and commercial areas (Patier et al., 2014). In both situations, the proposed traffic 
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management strategies would require some degree of vehicle connectivity and positioning (for 

example through GPS), which can be employed in connected and autonomous trucks.  

The optimization problems are solved by using the Memetic Algorithm (MA) meta-heuristic, an 

extension of the population-based hybrid genetic algorithms (GAs) that are coupled with a local 

search procedure that allows for refinements of the solutions. Although several applications of 

genetic algorithms have been proposed in the field of traffic control, to the best of our knowledge, 

MAs have not yet been utilized for this typology of problems. This technique is particularly 

suitable to situations where the objective function cannot be derived analytically, but only by 

means of simulations. Combining an extensive search of the best zones in the search space 

(exploration) with a more detailed search in zones with potential better solutions (exploitation) 

seems to work well for large problems (Cotta 2012).  Furthermore, MAs can often provide better 

results than other well-known approaches like Genetic Algorithm, Tabu Search, and Simulated 

Annealing (Garg, 2010).  

In the remainder of this chapter, we first introduce the background theory adopted in this study for 

the modeling of moving bottlenecks. Next, we provide a description of the fast semi-analytic 

algorithm to simulate single moving bottlenecks. We then extend this algorithm to various moving 

and fixed bottleneck scenarios. Finally, we illustrate the application of the proposed algorithm to 

the two different optimization problems. We conclude with a number of general remarks and 

recommendations for future research. 

3.2 ANALYTICAL SOLUTIONS TO THE HAMILTON-JACOBI PDE 

In this Section we briefly summarize the main features of the macroscopic traffic simulation used 

to investigate moving bottlenecks. The LWR model and the Hamilton-Jacobi PDE are described 

respectively in Section 3.2.1 and Section 3.2.2. The generalized Lax-Hopf formula used to solve 

this problem is presented in Section 3.2.3 and the formulation of initial, boundary and internal 

conditions is provided in Section 3.2.4. In the presence of moving bottlenecks, parameters like 

speed and passing rates cannot always be easily derived because of the influence of surrounding 
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traffic. Hence, in Section 3.2.5 we describe the model to derive internal conditions corresponding 

to the moving bottlenecks. 

3.2.1 The LWR-PDE 

We consider a one-dimensional homogeneous section of highway, limited by x0 upstream and xn 

downstream. For a given time t and position x we define the local traffic density k(x,t) in vehicles 

per unit of length, and the instantaneous flow q(x,t) in vehicles per unit time. The conservation of 

vehicles on the highway is written as follows (Lighthill and Whitman, 1956; Richards, 1956; 

Garavello and Piccoli, 2006). 

 

𝝏𝒌(𝒕, 𝒙)

𝝏𝒕
+
𝝏𝒒(𝒕, 𝒙)

𝝏𝒙
= 𝟎 

        (3.1) 

 

For first order traffic flow models, flow and density are related by the Fundamental Diagram (FD); 

in this study we adopt triangular FD (Daganzo, 1994). The FD is a positive function defined on 

[0,kj], where kj is the maximal density (jam density). It ranges in [0,qmax] where qmax is the 

maximum flow (capacity). It is assumed to be differentiable with derivative q'(0)=v>0 (free flow 

speed) and q'(kj)=w<0 (congested wave speed), and it is defined as follows: 

 

𝒒(𝒌) = {
𝒗 𝒌                  ∶   𝟎 ≤ 𝒌 ≤ 𝒌𝒄
−𝒘 (𝒌 − 𝒌𝒋)  ∶  𝒌𝒄 ≤ 𝒌 ≤ 𝒌𝒋

 

 

        (3.2) 

where 𝑘𝑐 corresponds to the critical density at capacity. 

3.2.2 The Moskovitz function 

The Moskovitz function expresses the cumulated vehicle count N(x,t) and it represents the 

continuous vehicle count at location x and time t. In the Moskovitz framework one assumes that 

all vehicles are labeled by increasing integers as they pass the entry point x0 of a highway section, 

and that they cannot pass each other. If the latest car that passed an observer standing at location x 

and time t is labeled n, then N(x,t)=n. 
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Replacing k and q with N yields to Hamilton-Jacobi PDE (Newell, 1993; Daganzo, 2005a, 2006; 

Claudel and Bayen, 2010a): 

 

𝝏𝑵(𝒙, 𝒕)

𝝏𝒕
− 𝒒(−

𝝏𝑵(𝒙, 𝒕)

𝝏𝒙
) = 𝟎 

 

       (3.3) 

3.2.3 The generalized Lax-Hopf Formula 

The generalized Lax-Hopf Formula is an implicit representation of the solution to a Hamilton-

Jacobi PDE. From Aubin et al. (2008), the solution associated with the value condition function c, 

denoted by 𝑁𝑐, is the infimum of an infinite number of functions of the value condition: 

 

𝑵𝒄 = 𝒊𝒏𝒇{𝒄(𝒕 − 𝑻, 𝒙 − 𝑻𝒖) + 𝑻𝑹(𝒖)}  

𝒔. 𝒕. (𝒖, 𝑻) ∈ [𝒘, 𝒗] × 𝑹+ 𝒂𝒏𝒅 (𝒕 − 𝑻, 𝒙 − 𝑻𝒖) ∈ 𝑫𝒐𝒎(𝒄) 
(3.4) 

 

where c(x,t) corresponds to value condition function defined on the domain 𝐷𝑜𝑚(𝑐) and it is 

defined as: 

 

𝒄(𝒙, 𝒕) = {

𝑵𝒊𝒏𝒊(𝒙)      𝒕 = 𝟎

𝑵𝒖𝒑(𝒕)         𝒙 = 𝒙𝟎
𝑵𝒅𝒐𝒘𝒏(𝒕)      𝒙 = 𝒙𝒏

 (3.5) 

 

And 𝑅(𝑢), which is convex transform associated with the fundamental diagram, corresponds to: 

 

𝑹(𝒖) = 𝐬𝐮𝐩
𝒌𝝐[𝟎,𝒌𝒋]

(𝒒(𝒌) − 𝒖 ∙ 𝒌) (3.6) 

 

This equation is well known in the Hamilton-Jacobi literature and often referred to as Lax-Hopf 

formula (Aubin et al., 2008; Evans, 1998). 

Assuming a triangular fundamental diagram, the calculation of its convex transform R yields to: 
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∀𝒖 ∈ [𝒘, 𝒗], 𝑹(𝒖) = 𝒌𝒄(𝒗 − 𝒖) (3.7) 

3.2.4 Boundary and internal conditions based on triangular fundamental diagram 

The initial conditions represent measurements of density along the link at the beginning of the 

simulation. The downstream and upstream boundary conditions correspond to measurements of 

flows at the downstream and upstream end of the link. The internal conditions could represent a 

variety of measurements N(x,t) collected along the link (e.g. vehicles’ trajectories), or, in this case, 

correspond to active fixed and moving bottlenecks.  

Definition of initial, upstream, downstream and internal conditions 

The initial condition is assumed piecewise linear function and it is defined for each space interval 

(xi, xi+1) of measurement by: 

 

𝒄𝒊𝒏𝒊𝒊(𝒙) = {
−𝒌𝒊𝒙 + 𝒃𝒊                         ∶ 𝒙𝒊 ≤ 𝒙 ≤ 𝒙𝒊+𝟏
+∞                                 ∶ 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 
(3.8) 

 

With the above definition, the initial condition can be written as 𝑐𝑖𝑛𝑖 = min
𝑖
𝑐𝑖𝑛𝑖𝑖. 

Similarly, the upstream boundary condition that is also is assumed piecewise linear, is measured 

for each time interval (ti, ti+1) and defined by: 

  

𝒄𝒖𝒑𝒋(𝒕) = {
𝒒𝒋𝒕 + 𝒄𝒋                             ∶   𝒕𝒋 ≤ 𝒕 ≤ 𝒕𝒋+𝟏
+∞                                       ∶ 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 
 (3.9) 

 

With this definition, the upstream boundary condition can be written as 𝑐𝑢𝑝 = min
𝑗
𝑐𝑢𝑝𝑗. The 

downstream boundary conditions are also assumed piecewise linear, with each piece (ti, ti+1) 

defined by: 

 

𝒄𝒅𝒐𝒘𝒏𝒋(𝒕) = {
𝒑𝒋𝒕 + 𝒅𝒋                             ∶   𝒕𝒋 ≤ 𝒕 ≤ 𝒕𝒋+𝟏
+∞                                       ∶ 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 
(3.10) 

 

This enables us to define the downstream boundary condition function as 𝑐𝑑𝑜𝑤𝑛 = min
𝑗
𝑐𝑑𝑜𝑤𝑛𝑗 , 
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The internal condition corresponding to a fixed or moving bottleneck active on the space-time 

domain between (𝑥𝑏, 𝑡𝑏) and (𝑥𝑒, 𝑡𝑒), can be defined as: 

 

𝒄𝒊𝒏𝒕(𝒕, 𝒙)

= {
𝑵𝒃 +

(𝑵𝒆 −𝑵𝒃)

(𝒕𝒆 − 𝒕𝒃)
∙ (𝒕 − 𝒕𝒃)    ∶ 𝒙 = 𝒙𝒃 +

(𝒙𝒆 − 𝒙𝒃)

𝒕𝒆 − 𝒕𝒃
∙ (𝒕 − 𝒕𝒃) 𝒂𝒏𝒅 𝒕 ∈ [𝒕𝒃, 𝒕𝒆] 

+∞                          ∶                                              𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

 

 
(3.11) 

where 𝑁𝑏 and 𝑁𝑒 respectively denote the values of the label corresponding to the internal condition 

(Moskovitz function) at the beginning 𝑡𝑏 and at the end 𝑡𝑒 of the time interval over which the 

moving bottleneck is active. 

One of the major results of Mazaré et al. (2011) is that the solutions associated with each linear 

piece of the initial, upstream, downstream and internal boundary conditions can be computed 

analytically as follows: 

a) Solution to a linear initial condition 

If 0 ≤ 𝑘𝑖 ≤ 𝑘𝑐, the initial condition imposes a free-flow state. 

 

𝑵𝒄𝒊𝒏𝒊(𝒙, 𝒕) = {
𝒌𝒊(𝒕𝒗 − 𝒙) + 𝒃𝒊               ∶ 𝒙𝒊 + 𝒕𝒗 ≤ 𝒙 ≤ 𝒙𝒊+𝟏 + 𝒕𝒗 

𝒌𝒄(𝒕𝒗 − 𝒙) + 𝒃𝒊 + 𝒙𝒊(𝒌𝒄 − 𝒌𝒊)   ∶  𝒙𝒊 + 𝒕𝒘 ≤ 𝒙 ≤ 𝒙𝒊 + 𝒕𝒗                
 

 

 
(3.12) 

 

else, if 𝑘𝑐, ≤ 𝑘𝑖 ≤ 𝑘𝑗 , the initial condition imposes a congested state: 

 

𝑵𝒄𝒊𝒏𝒊𝒊(𝒙, 𝒕)

= {
𝒌𝒊(𝒕𝒘 − 𝒙) − 𝒕𝒌𝒋𝒘+ 𝒃𝒊                              ∶ 𝒙𝒊 + 𝒕𝒘 ≤ 𝒙 ≤ 𝒙𝒊+𝟏 + 𝒕𝒘 

𝒌𝒄(𝒕𝒘 − 𝒙) − 𝒕𝒌𝒋𝒘+ 𝒙𝒊+𝟏(𝒌𝒄 − 𝒌𝒊) + 𝒃𝒊     ∶  𝒙𝒊+𝟏 + 𝒕𝒘 ≤ 𝒙 ≤ 𝒙𝒊+𝟏 + 𝒕𝒗 
 

 
 
(3.13) 

 

b) Solution to a linear upstream boundary condition 

For an upstream boundary condition 𝑐𝑢𝑝
𝑗 defined as (9), the solution component can be expressed 

as: 
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𝑵𝒄𝒖𝒑𝒋(𝒙, 𝒕)

= {
𝒄𝒋 + 𝒒𝒋 (𝒕 −

𝒙 − 𝒙𝟎
𝒗𝒇

)   ∶  𝒙𝟎 + 𝒗(𝒕 − 𝒕𝒋+𝟏) ≤ 𝒙 ≤ 𝒙𝟎 + 𝒗(𝒕 − 𝒕𝒋)

𝒄𝒋 + 𝒒𝒋𝒕𝒋+𝟏 + 𝒌𝒄 ((𝒕 − 𝒕𝒋+𝟏)𝒗 − (𝒙 − 𝒙𝟎))   ∶  𝒙𝟎 ≤ 𝒙 ≤ 𝒙𝟎 + 𝒗(𝒕 − 𝒕𝒋+𝟏)

 

 

 
 
 
(3.14) 

 

c) Solution to a linear downstream boundary condition 

For a downstream boundary condition 𝑐𝑑𝑜𝑤𝑛
𝑗, defined as (10), the solution component can be 

expressed as: 

 

𝑵𝒅𝒐𝒘𝒏
𝒋(𝒙, 𝒕)

= {
𝒅𝒋 + 𝒑𝒋𝒕 − (

𝒑𝒋

𝒘
+ 𝒌𝒋) (𝒙𝒏 − 𝒙)    ∶  𝒙𝒏 +𝒘(𝒕 − 𝒕𝒋) ≤ 𝒙 ≤ 𝒙𝒏 +𝒘(𝒕 − 𝒕𝒋+𝟏)

𝒅𝒋 + 𝒑𝒋𝒕𝒋+𝟏 + 𝒌𝒄 ((𝒕 − 𝒕𝒋+𝟏)𝒗 + 𝒙𝒏 − 𝒙)    ∶ 𝒙𝒏 +𝒘(𝒕 − 𝒕𝒋) ≤ 𝒙 ≤ 𝒙𝒏

 

 
 
(3.15) 

 

d) Solution to a linear internal condition  

In this study, the internal conditions represent the effects of vehicles or obstructions that modify 

the trajectory of a specific vehicle. They are represented as piecewise linear functions with two 

parameters: speed and passing rate that are indicated respectively as the velocity of the moving 

bottleneck s: 

  

𝒔 =
(𝒙𝒆 − 𝒙𝒃)

(𝒕𝒆 − 𝒕𝒃)
 

(3.16) 

 

And as the number of vehicles passing the moving bottleneck per unit time: 

 

𝒓 =
𝑵𝒆 −𝑵𝒃
𝒕𝒆 − 𝒕𝒃

 
(3.17) 

Then, for an internal condition 𝑐𝑖𝑛𝑡 defined as (11), the solution component can be expressed as: 

𝑵𝒊𝒏𝒕(𝒙, 𝒕) = (𝒕 − 𝒕
′) ∙ (𝒖 + 𝒗) ∙ 𝒌𝒄 + (𝑵𝒆 −𝑵𝒃) ∙

(𝒕′ − 𝒕𝒃)

(𝒕𝒆 − 𝒕𝒃)
+ 𝑵𝒃        ∶ 

  𝒙 ≤ 𝒙𝒃 + 𝒗 ⋅ (𝒕 − 𝒕𝒃) ∧  𝒙 ≥ 𝒙𝒃 +𝒘 ⋅ (𝒕 − 𝒕𝒃) ∧ 𝒕 ≥ 𝒕𝒃  

 
(3.18) 
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where 𝑡′, which corresponds to the capture time in the viability framework from which these 

formulations are derived (Aubin, et al., 2008), is derived as follows: 

 

𝒕′

=

{
 
 

 
 𝒕 −

(𝒙𝒃 + 𝒔 ∙ (𝒕 − 𝒕𝒃) − 𝒙)

(𝒔 − 𝒗)
    ∶    𝒙𝒆 + 𝒗 ⋅ (𝒕 − 𝒕𝒆) ≤ 𝒙  ∧     𝒙𝒃 + 𝒔 ⋅ (𝒕 − 𝒕𝒃) ≤ 𝒙     

𝒕𝒆                                  ∶      𝒙𝒆 +𝒘 ⋅ (𝒕 − 𝒕𝒆) ≤ 𝒙                                  

𝒕 −
(𝒙𝒃 + 𝒔 ∙ (𝒕 − 𝒕𝒃) − 𝒙)

(𝒔 + 𝒘)
               ∶                 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                                                          

 

 
 
 
(3.19) 

 

and 𝑢 corresponds to associated optimal control of the auxiliary dynamical system (Aubin et al., 

2008; Bayen et al., 2007): 

 

𝒖 = {

−𝒗    ∶    𝒙𝒆 + 𝒗 ⋅ (𝒕 − 𝒕𝒆) ≤ 𝒙  ∧     𝒙𝒃 + 𝒔 ⋅ (𝒕 − 𝒕𝒃) ≤ 𝒙     
(𝒙𝒆 − 𝒙)

(𝒕 − 𝒕𝒆)
    ∶      𝒙𝒆 +𝒘 ⋅ (𝒕 − 𝒕𝒆) ≤ 𝒙              

𝒘      ∶      𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 

 

 
(3.20) 

 

The speed of the moving bottleneck (s) and the passing rate (r) cannot be straightforwardly 

determined in (16) and (17). Indeed, only the initial position and the starting time of each moving 

bottleneck are known a priori, but not the evolution of the parameters s and r associated with each 

moving bottleneck, since they depend on the solution itself. For this reason, in the following 

sections, as main contribution of this study, we show how to compute the evolution of s and r in 

the presence of several moving bottlenecks, given known initial and boundary conditions, and 

given the knowledge of maximal velocity, starting time and starting position of each bottleneck.  

3.2.5 Modeling single moving bottlenecks as internal conditions 

The dynamics of s and r is complex, since the behavior of a moving bottleneck is inherently hybrid, 

with active and inactive phases depending on the state of traffic. A moving bottleneck becomes 

“active” when it actually slows down the incoming traffic from upstream. This situation occurs 

when the traffic flow is sufficiently high to be hindered by the moving bottleneck. Following 
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Munoz and Daganzo (2004), and Daganzo and Laval (2005), three situations can be distinguished 

(Figure 1):  

1. The moving bottleneck is inactive because there is enough capacity for regular traffic to overtake 

(region 1 in Figure 3)  

2. The moving bottleneck is active because regular traffic is traveling at higher speed and capacity 

is not enough for everyone to overtake (region 2 in Figure 3) 

3. The moving bottleneck is inactive because regular traffic is traveling at a lower speed than the 

maximum velocity of the bottleneck, because of congestion (region 3 in Figure 3) 

 

 

Figure 3: Flow-density relationship of moving bottlenecks according to the Munoz-Daganzo 

model 

In order to identify whether the moving bottleneck is active and derive its corresponding internal 

conditions we adopted the following approach based on the difference of cumulated flow between 

two consecutive points along the trajectory of the moving bottleneck: 

Choose an arbitrary time step ∆𝑡 
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Calculate the values of the Moskovitz function for: 𝑁 (𝑥0, 𝑡0) = 𝑁0 and 𝑁 (𝑥0 + 𝑣𝑚𝑎𝑥∆𝑡, 𝑡0 +

∆𝑡) = 𝑁1, where (𝑥0, 𝑡0) corresponds to the position of the moving bottleneck in the end of the 

previous time interval, and 𝑣𝑚𝑎𝑥 corresponds to the maximum speed of the moving bottleneck. 

Identify the three abovementioned cases based on the flow between the two consecutive points 

(ratio between the difference of the Moskovitz function and time): 

𝜌 =
(𝑁1 − 𝑁0)

∆𝑡
 (3.21) 

 

0 < 𝜌 < 𝑞𝑟  inactivity due to low volumes (traffic is too light)  

𝜌 > 𝑞𝑟 activity 

𝜌 < 0 inactivity due to congestion (traffic is slower than the maximum velocity of the 

bottleneck) 

In the above, 𝑞𝑟 corresponds to the maximum passing rate of the moving bottleneck, which is the 

maximum flow that can ever pass the moving bottleneck going at its maximum speed. The 

formulation of 𝑞𝑟 is based on the model by Munoz and Daganzo (2004) and it corresponds to: 

 

𝒒𝒓 =
(𝒖 − 𝒗𝒎𝒂𝒙) ∙ 𝒌𝒄 ∙ (𝒏𝒍 − 𝟏)

𝒏𝒍
 

(3.22) 

 

 where 𝑢 stands for the free flow speed, 𝑘𝑐 is the critical density and 𝑛𝑙 is the number of lanes. 

Only in the case of active moving bottlenecks, a new internal condition with speed 𝑠 = 𝑣𝑚𝑎𝑥 and 

overtaking rate 𝑟 = 𝑞𝑟 is defined and stored. The internal condition applies between times 𝑡0 and 

𝑡0 + Δ𝑡, and between positions 𝑥0 and 𝑥0 + 𝑣𝑚𝑎𝑥 ∙ Δ𝑡, with beginning and end values of 𝑁0 and 

𝑁1 = 𝑁0 + 𝑞𝑟Δ𝑡. 

In case of activity over several consecutive intervals (∆𝑡), only the values of the Moskovitz 

function at the onset and end of activity, as well as the corresponding times and positions, are 

stored as internal conditions 𝑐𝑖𝑛𝑡. 

In case of inactivity of the moving bottleneck due to congested conditions, the moving bottleneck 

travels at the speed of the surrounding traffic (which is less than its maximal speed), given by: 
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𝒔 =
−𝒘 ∙ (𝒌𝟎 − 𝒌𝒋)

𝒌𝟎
 

(3.23) 

 

where 𝑤 corresponds to the congested speed, 𝑘𝑗 corresponds to the jam density and 𝑘0 corresponds 

to the density of the traffic around the bottleneck. 

Finally, if the moving bottleneck is inactive due to low flow conditions, its velocity is set to 𝑣𝑚𝑎𝑥. 

Hence, the moving bottleneck’s trajectory can be summarized by the following ODE: 

 

𝒙̇ = 𝒔(𝒌(𝒙, 𝒕)) 
(3.24) 

 

where the speed s of the moving bottleneck corresponds to: 

 

𝒔 = {

𝒗𝒎𝒂𝒙           ∶  𝒌 ≤ 𝒌𝑼                
−𝒘 ∙ (𝒌𝟎 − 𝒌𝒋)

𝒌𝟎
∶     𝒆𝒍𝒔𝒆                        

 

 
(3.25) 

 

And where 𝑘𝑈 and 𝑘𝐷 are the density values defining the region for which the moving bottleneck 

becomes active as shown in Figure 1. The moving bottleneck’s label Nmb is given by the 

following ODE: 

 

𝑵𝒎𝒃̇ (𝒕) = 𝒇(𝒌(𝒙, 𝒕)) (3.26) 

 

where f(k) corresponds to: 

 

𝒇(𝒌) = {

 
𝒒𝒓                                     𝒊𝒇 𝒌𝑫 < 𝒌 < 𝒌𝑼 

 
𝟎                                                          𝒆𝒍𝒔𝒆  

 

               
(3.27) 

 

The algorithm for the computation of internal conditions associated with a single moving 

bottleneck can be summarized as the pseudocode below (Algorithm 1). 
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Algorithm 1: Pseudo-code for the computation of internal conditions associated with a single moving 
bottleneck 

Input: (𝒙𝟏, 𝒕𝟏, 𝒙𝟐, 𝒗𝒎𝒂𝒙) moving bottleneck; 

 

 

 

 

Input: (v, kc, kj, nl)  

 

 

Input T 

 

qr=(v-vmax)*kc*(nl-1)/nl;                                                                                        

 

 

 

𝒕𝟎 = 𝒕𝟏 

𝒙𝟎 = 𝒙𝟏 

 

 

while  𝒕𝟎 ≤ 𝑻 𝒂𝒏𝒅 𝒙𝟎 

 

 

𝒕𝟏 = 𝐭𝟎 + 𝚫𝒕 
𝒙𝟏 = 𝒙𝟎 + 𝒗𝒎𝒂𝒙𝚫𝒕 

 

 

 

 

N0=inf{Nini, Nup, Ndown, Nint} calculated at point (x0,t0) using initial, 

upstream, downstream and currently defined internal conditions 

 

N1=inf{Nini,Nup, Ndown, Nint} calculated at point (x1,t1) using initial, 

upstream, downstream and currently defined internal conditions  

 

 

if (N1- N0)/Δt >0 then 

      if (N1- N0)/Δt < qr   

 

 

𝒕𝟎 = 𝒕𝟏 

𝒙𝟎 = 𝒙𝟏 

  

 

      Else 

              

               Add new internal condition with parameters 

                               {𝑵𝒃, 𝒙𝒃, 𝒕𝒃; 𝑵𝒆, 𝒙𝒆, 𝒕𝒆 }  

             
𝒕𝟎 = 𝒕𝟏 

Input initial position and time, final 

position, and performance 

characteristics of the moving 

bottleneck 

 

Input list of fundamental diagram 

parameters 

 

Input simulation time horizon 

 

Derive maximum passing rate for 

the moving bottleneck, given the 

number of lanes of the road 

 

Initialize bottleneck time 

Initialize bottleneck position 

 

 

While the bottleneck vehicle is still 

on the computational domain 

 

update time  

update position 

 

 

 

 

Calculate Moskovitz function at the 

previous and new positions of the 

moving bottleneck  

 

 

 

 

 

If bottleneck is inactive due to low 

flows 

 

Update time 

Update position 

 

 

If bottleneck is active 

 

Store new internal condition 

 

 

Update time 



31 

 

𝒙𝟎 = 𝒙𝟏 

 

      end if 

 

Else 

          

       

derive speed s from Equation 
−𝒘∙(𝒌𝟎−𝒌𝒋)

𝒌𝟎
 

 

𝒕𝟏 = 𝒕𝟎 + 𝚫𝒕 
𝒙𝟏 = 𝒙𝟎 + 𝒔𝚫𝒕 

 

end if 

 

end while 

Update position 

 

If bottleneck is inactive due to high 

congestion 

 

Compute actual speed of bottleneck   

 

Update time 

Update position 

             

 

To illustrate the capabilities of Algorithm 1, we present the following example of a stretch of a 

two-lane road of length 3000 m characterized by some arbitrary initial and boundary shown 

respectively in Table 1 and Table 2. A moving bottleneck entering at 𝑥 = 1500 𝑚 and 𝑡 = 150 𝑠 

with 𝑣𝑚𝑎𝑥 = 5 𝑚/𝑠 is included in the simulation (red trajectory in Figure 2). The following 

parameters characterizing the triangular fundamental diagram are chosen: 𝑣 = 30 𝑚/𝑠, 𝑘𝑐 =

0.04  𝑣𝑒ℎ/𝑚, 𝑘𝑗 = 0.2 𝑣𝑒ℎ/𝑚. 

 

Table 1: Upstream and downstream boundary conditions 

𝒊 𝒙𝒊−𝟏 𝒙𝒊 𝒌𝒊𝒏𝒊 
1 0 1000 0.04 
2 1000 2000 0.02 
3 2000 3000 0.04 

  

Table 2: initial conditions 

𝒊 𝒕𝒊−𝟏 𝒕𝒊 𝒒𝒖𝒑
𝒊  𝒒𝒅𝒐𝒘𝒏

𝒊  

1 0 40 1.0 0.9 
2 40 180 1.0 0.2 
3 180 300 1.0 0.9 
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The simulation, which was performed on Matlab with a 2.3 GHz processor, required about 0.70 

seconds, of which less than 0.03 seconds are spent computing the parameters of the internal 

conditions and the trajectory of the moving bottleneck. The rest is used to compute the solution on 

the entire on a rectangular grid of resolution one second and ten meters, and to display the 

corresponding results. The results of the simulation are shown in a space-time-density diagram 

(Figure 4). 

This simulation illustrates the benefits of the method over existing numerical schemes. Different 

numerical schemes have been proposed to model moving bottlenecks (, such as first order 

numerical schemes (Daganzo and Laval, 2005; Leclercq, 2007), variational schemes (Daganzo, 

2005), or wave-front tracking schemes (Henn, 2005), although they all require the solution to be 

computed everywhere on the computational domain. For example, the Godunov scheme (first 

order) requires us to compute the solution on the entire computational grid, and so does the 

Variational theory (in which bottlenecks are encoded as shortcuts in the computational grid). 

Similarly, wave-front tracking methods require the solution to be computed on the entire 

computational domain. Since most optimization problems in transportation do not require us to 

know the solution everywhere on the computational domain, this is a significant advantage as it 

allows us to first compute the parameters of all moving bottlenecks, and then compute the exact 

solution at the few points of the computational domain needed to determine the objective to be 

optimized, corresponding to a significant improvement in computational time and complexity. 
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3.3 FAST ALGORITHM TO COMPUTE MULTIPLE BOTTLENECKS 

In this section, after a brief discussion on the complexity of the problem (Section 3.3.1), we present 

an extension of the previous algorithm (Algorithm 1) to the model an arbitrary number of different 

bottlenecks. The algorithm is based on the properties of inf-morphism and domains of influence 

of traffic flows (Section 3.3.2) and it is able to cope with moving bottlenecks overtaking each other 

(Section 3.3.3). The algorithm is described and compared to other analytical schemes in Section 

3.3.4 and Section 3.3.5. 

3.3.1 Background 

The necessity of modeling the impacts of multiple trucks, buses and other kinds of slow moving 

vehicles on traffic has been recognized and increasingly emphasized in the last twenty years in the 

field of Traffic Flow Theory. To our knowledge, all these efforts have been made to study the 

effects of a single moving bottleneck, or moving bottlenecks for which the parameters (activity, 

Figure 4: Space-time-density diagram representing the results of the test 

stimulation. In this simulation, the trajectory of the moving bottleneck 

is shown in red 
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velocity) are determined before the simulation. The objective is to include these into current traffic 

models,, such as the LWR model. Extending previous work to an arbitrary number of moving 

bottlenecks (without relying on continuous flow approximations as in Liu, et al., 2015) implies 

several challenges, consisting in dynamically computing several trajectories-since moving 

bottlenecks can both affect and be affected by surrounding traffic and accounting for their 

interactions accurately and efficiently from a computational perspective. In this section, we 

describe how a fast algorithm based on the Lax-Hopf algorithm outlined earlier can be used to 

compute the solution associated with multiple moving (and fixed) bottlenecks.  

In order to derive multiple internal conditions associated with several (active) moving bottlenecks, 

while accounting for their interactions and different properties, we propose a strategy based on 

two important properties of the solutions to Hamilton-Jacobi equations: the existence of a domain 

of influence for each internal condition, and the inf-morphism property of solutions. 

3.3.2 Inf-morphism and domains of influence 

The inf-morphism property implies that we can dynamically update the number of moving 

bottlenecks considered in the simulation problem, without having to re-compute the solution 

entirely. The domains on which the solution has to be re-computed are the domains of influence 

of the bottlenecks, which are the set of points that can be reached by characteristics with speeds 

ranging from –w to v, and originating on the internal condition (moving bottleneck trajectory). 

Indeed, for each position of the moving bottleneck, it is possible to identify its region of influence 

in the space and time dimension delimited by the congested and free-flow speed in the triangular 

fundamental diagram (respectively equal to w and v). Whenever the moving bottleneck i at the 

position (xi,yi) enters in the domain of influence of the moving bottleneck j at the position (xj,yj), 

the derivation of internal conditions has to be performed along the trajectory of moving bottleneck 

j. This stepwise computation can be repeated back and forth among several moving bottlenecks 

until the simulation is completed. Algorithm 2 summarizes this process, for an arbitrary number 

nb of moving bottlenecks with (possibly distinct) maximum speeds vmb,i, entering the road at 

(x1,i,t1,i) and leaving at x2,i. 
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3.3.3 Passing bottlenecks and Zeno effect 

The model used in this study corresponds to the coupling of a PDE (the LWR equation) with an 

ODE describing the evolution of the slow vehicles. The latter is hybrid, in the sense that the slow 

vehicles can only be in the three possible states outlined earlier. As with all hybrid systems, the 

dynamics can sometime exhibit the Zeno effect (Johansson et al., 1999). An execution of a hybrid 

system is called Zeno, if it takes infinitely many discrete transitions (and therefore computational 

loops) to solve the problem over a finite time horizon. In the present situation, the Zeno effect 

arises when bottlenecks are passing each other, as illustrated in Figure 5. In this situation, their 

respective domains of influence impose an upper bound on the time step used to update the position 

of each bottleneck (to ensure that the final position of one bottleneck is always outside the domain 

of influence of the other), and this upper bound becomes infinitely small as their paths come to 

intersect. This effect complicates the implementation of the algorithm as it can lead to infinite 

loops, if we want an exact solution. To solve this problem, we adopt a constant time step for the 

computation of the trajectories associated with moving bottlenecks: this allows the execution to be 

complete over a finite (and bounded above) number of steps, at the cost of computational accuracy, 

since this introduces an approximation of the behavior of both bottlenecks when they intersect 

each other.  
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3.3.4 Algorithm 

The corresponding pseudo-code is shown as Algorithm 2.  

Algorithm 2: Pseudo-code implementation for the computation of internal conditions associated with nb 

multiple moving bottlenecks 

Input: (𝒙𝟏,𝒊, 𝒕𝟏,𝒊, 𝒗𝒎𝒂𝒙,𝒊) ∀ 𝒊 ∈ [𝟏, 𝒏𝒃]  
 

 

 

 

Input: (v, kc, kj, nl)  

 

 

Input T 

Input initial position and time, final 

position, and performance 

characteristics of moving 

bottlenecks 

 

Input list of fundamental diagram 

parameters 

 

Input simulation time horizon 

Figure 5: Space-time-density diagram showing the simulation of two overtaking 

moving bottlenecks 
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qr,i=(v-vmax,i)*kc*(nl-1)/nl;                                                                                        

 

 

b={1,…,n_b} 

 

𝒕𝒊 = 𝒕𝟏,𝒊 

𝒙𝒊 = 𝒙𝟏,𝒊 
 

 

while  𝒃 ≠ ∅ 

 

 

 

for 𝒊 ∈ 𝒃 

    if 𝒕𝒊 > 𝑻 or 𝒙𝒊 ≥ 𝒙𝒎𝒂𝒙 

   𝒃 = 𝒃 \{𝒊} 
  end 

end 

 

 

l=b 

 

 

for 𝒊 ∈ 𝒃 

 for 𝒋 ∈ 𝒃\{𝒊}    
       if (𝒕𝒊, 𝒙𝒊) ∈ 𝑫𝒋 (𝑫𝒋 domain of influence of bottleneck j) 

           l=l \ {i} 

      end 

end 

end 

 

if 𝒍 ≠ ∅ 

 

     while 𝒍 ≠ ∅ 

          pick 𝒊 ∈ 𝒍 
 

         compute propagation of moving bottleneck (according to 

        Algorithm 1) 

         𝒍 = 𝒍  \{𝒊} 
   end while 

 

else 

 

 

 

Identify intersecting bottlenecks, and propagate them approximately 

according to Algorithm 1 

 

end 

 

Derive maximum passing rate for 

each moving bottleneck 

 

Initialize bottlenecks list 

 

Current time for each bottleneck 

Current position for each bottleneck 

 

While some bottleneck vehicles are 

still on the computational domain 

 

Eliminate bottlenecks that have left 

the computational domain 

 

 

 

Initialize list of bottlenecks that are 

not influenced by others (and that 

can thus be computed) 

 

Compute list of bottlenecks that are 

not influenced by others  

 

 

 

 

 

 

 

If there are moving bottlenecks that 

are not influenced by others  

 

Propagate these bottlenecks 

according to Algorithm 1 

 

 

 

 

 

If none of the bottleneck is outside 

of the zone of influence of all others 

(bottleneck intersection)  
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end while 

 

An example of the application of Algorithm 2 is illustrated in the sequence of simulations in Figure 

4, where the different steps of the computation of the solution are shown for a pair of moving 

bottlenecks (indicated by letters A and B). First, the trajectory of moving bottleneck A and its 

impact on traffic are computed till it intersects the domain of influence of moving bottleneck B 

(Figure 6a), indicated by the green lines (Phase 1). Likewise, the solution associated with moving 

bottleneck B can be computed till it reaches the domain of influence of moving bottleneck A at its 

last position in the space and time (Figure 6b). The procedure is repeated back and forth till the 

moving bottleneck leaves the road (Figure 6c) or the simulation ends (Figure 6d). 

A more general example involving ten moving bottlenecks having different speeds (Table 3) and 

three fixed bottlenecks (representing constant red cycles of a traffic light) on the same link used in 

the previous cases for a time span of 300 seconds, is illustrated in Figure 5. The simulation requires 

about 0.15 seconds for the computation of the internal conditions and 2.2 seconds for the 

computation of the solutions. The Moving bottlenecks’ trajectories were obtained using a time and 

space resolution of one second and ten meters. These results confirm the efficiency of the 

algorithm. 
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Table 3: Moving bottleneck features 

𝒊 1 2 3 4 5 6 7 8 9 10 
x1 2000 1000 1000 1600 1200 2000 800 1500 1500 1000 

t2 60 20 50 150 120 220 180 270 330 320 

vmax 5 8 10 10 8 12 10 8 5 5 
 

Figure 6: Example propagation of two moving bottlenecks. In (a), moving bottleneck A 

intersects the domain of moving bottleneck B. The algorithm continues 

propagating both bottlenecks (b, c) until both bottlenecks have left the 

computational domain (d) 
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3.3.5 A performance comparison with other numerical schemes 

One of the greatest advantages of the proposed approach over other numerical schemes is its 

exactness: because the solutions are computed analytically, no approximation is required to 

determine the parameter of the internal conditions. Once these parameters are known (exactly), we 

can also compute the solution associated to the problem on any computational grid, following from 

Mazaré et al. (2011). While the Variational Theory (dynamic programming) also yields exact 

results in certain conditions (lopsided grid and fine-meshed grid), these conditions are not satisfied 

in practice as there is no guarantee that the beginning or the end of an internal condition will fall 

exactly on a grid point, causing errors. 

A second advantage of the present formulation is the fact that one does not need to compute the 

solution everywhere on the computational grid to determine the parameters of the fixed 

bottlenecks. This represents an important advantage in optimization: if the objective function of 

the optimization problem requires the solution to be evaluated in m points, and if the problem 

contains n internal conditions, 𝑝 initial conditions, the total number of required computations is 

bounded above by: (𝑝 + 2)(∑ (1 + 𝑖)𝑛
𝑖=1 + (1 + 𝑛)𝑚) = (𝑝 + 2)(𝑛 +

𝑛(𝑛+1)

2
+ (1 + 𝑛)𝑚). 

Indeed, (𝑝 + 2)(1 + 𝑛)𝑚 is an upper bound on the required number of computations to evaluate 

the solution in m points, and  (𝑛(𝑛 + 1))/2 is an upper bound on the number of computations 

required to determine the parameters associated with all n internal conditions. In practical 

problems, both n and m are low. The number n corresponds to the number of red signal phases in 

the problem, while m represents the number of points needed to evaluate the objective function, 

which is also low in several important cases. For example, maximizing the outflow over the time 

horizon requires the evaluation of the solution in two points (m=2). Other algorithms, such as the 

Godunov scheme (or equivalently the Cell Transmission Model (Daganzo, 1994; Daganzo, 1995) 

require the computation of the solution over the complete computational grid, which can require a 

much higher number of computations (depending on the desired accuracy). The algorithm 

proposed by Leclercq and Becaire (2012) can be extended to multiple bottlenecks scenarios, and 
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has a lower upper bound on its number of operations: 2(𝑛 +
𝑛(𝑛+1)

2
+ (1 + 𝑛)𝑚), though this 

specific algorithm does not consider initial conditions. 

 

3.4 APPLICATION TO TRAFFIC OPTIMIZATION PROBLEMS  

The capabilities of the traffic simulation algorithm for moving bottlenecks are shown in two 

optimization problems solved by means of the heuristic MA, described in Section 3.4.1. The first 

one consists of control of inflow truck traffic into a main arterial combined with a traffic signal 

control (Section 3.4.2), while the second one consists of real-time curbside management for truck 

deliveries in urban environments (Section 3.4.3). In these tests, we assume that the initial and 

boundary conditions are known (and arbitrary). Though real world applications of traffic 

management involve multiple connecting links, for the purpose of this dissertation, we investigate 

the performance of the fast simulation algorithm in two problems involving a single link. In both 

cases, each moving bottleneck is characterized by different features (maximum speed, entry times) 

in order to add complexity. The results for both optimization problems are presented in Section 

3.4.4. 

3.4.1 Memetic Algorithm 

Similarly to GAs, MAs are very flexible as they do not they do not require any knowledge of the 

gradient and they can avoid getting stuck in local optima (Teklu et al., 2007). In addition, MAs are 

more suitable to simulation-based frameworks as derivative-based optimization methods require 

the knowledge of the analytical form of the problem. For these reasons, GAs have been already 

employed to solve different joint traffic control and assignment problems (Foy et al., 1992; Lee 

and Machemehl, 1998; Yin, 2000; Ceylan and Bell, 2004; Teklu et al., 2007). In this study, the 

MA adopted consists of the following steps: 

Step 0 (Initial Population): Generating a population of n random solutions satisfying the problem 

constraints (if any). The fitness value of each solution (according to the optimization problem) is 

calculated by performing a simulation with the fast algorithm presented in the previous section. 
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Step 1 (Parents selection): Parents are chosen by means of the tournament selection procedure, 

which consists in the selection of best performing solutions among a restricted pool of randomly 

chosen solutions from the population. 

Step 2 (Breeding): Children are derived by means of a two-point crossover procedure. In case of 

combinatorial optimization, “Order 1 Crossover” is used, which is an ordered crossover method 

applicable where direct swap is not feasible. 

Step 3 (Mutation-Local Search): The traditional mutation operators like swapping or moving some 

nodes are replaced by a local search (LS) procedure LS. The LS scan a series of decision variables 

and performs alternative operations to check whether the solution can be improved. If so, the 

mutated solution replaces the original one. The LS procedure occurs with a certain predefined 

probability. The LS consists of testing a series of simple moves performed sequentially for all 

chromosomes belonging to a randomly chosen child solution. The first move (M1) consists of a 

simple swap between two consecutive chromosomes. The second move (M2) consists of replacing 

the chromosome with the unused parent’s chromosome. If any move yields to an improvement of 

the solution, the LS is terminated and the mutated solution becomes part of the new population. 

3.4.2 Joint coordination of traffic lights and trucks departures problem 

The first application corresponds to the managing the entrance of slow vehicles on a main arterial 

with a traffic light downstream. Such a situation might occur at the merging of roads characterized 

by significant presence slower vehicles (e.g. major road connectors from ports, shopping malls, 

plants). The coordination between the traffic lights and the trucks could be achieved through 

Connected Vehicle (CV) technology, for example by issuing real time guidance information to the 

slow vehicle drivers.  

In this optimization problem, the objective function corresponds to the total outflow, calculated as 

the cumulative number of vehicles at the downstream end of the link 𝑁𝑑. In this problem, the total 

outflow depends on the entry times of i trucks (𝑡𝑖) and the on the signal settings 𝜑𝑗 = (𝑐, 𝜙), where 

𝑐 and 𝜙 correspond respectively to the cycle time length and the green time length of traffic signal 

j. Hence, the optimization problem is characterized by (3×j) decision variables. Each solution 
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corresponds to an array specifying the entry times of the trucks, and the cycle length and green 

time of the traffic light. Hence the problem can be expressed as: 

 

max
𝑡𝑖,𝜑𝑗

𝑁𝑑(𝑡𝑖, 𝜑𝑗)   

subject to: 

 

1. 𝑡𝑖,𝑚𝑖𝑛 ≤ 𝑡𝑖 ≤ 𝑡𝑖,𝑚𝑎𝑥 ∀𝑖 ∈ 𝐼                                         (moving bottlenecks’ entry times 

constraints) 

2. 𝜑𝑗(𝑐, 𝜙) {
𝑐𝑚𝑖𝑛 ≤ 𝑐 ≤ 𝑐𝑚𝑎𝑥
𝜙𝑚𝑖𝑛 ≤ 𝜙 ≤ 𝜙𝑚𝑎𝑥

       ∀𝑗 ∈ 𝐽                     (cycle times and green times 

constraints) 

 
The initial scenario consists of a 300 meters with a traffic light situated at the downstream end of 

the link. A time period of 600s (10 minutes), during which 10 trucks enter from the location 

upstream the link, which represents a significant source of truck traffic. Each truck enters the link 

at a different time and it is characterized by a different maximum speed (Table 4). The traffic light 

is characterized by an initial cycle time of 120s and green time of 72s. A time step of 2s is used 

for the simulation. The boundary and initial conditions are reported respectively in Table 5 and 

Table 6. The following parameters characterizing the triangular fundamental diagram are chosen: 

𝑢 = 20 𝑚/𝑠, 𝑘𝑐 = 0.04 𝑣𝑒ℎ/𝑚, 𝑘𝑗 = 0.12 𝑣𝑒ℎ/𝑚.  

Table 4: Moving bottlenecks’ characteristics in the first optimization problem 

Moving 

bottleneck 

1 2 3 4 5 6 7 8 9 10 

Entry 

time (s) 

20 100 150 220 260 300 330 370 420 500 

Maximum 

speed 

(m/s) 

8 11 5 8 5 6 12 7 9 10 
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Table 5: Upstream and downstream boundary 

𝒊 𝒕𝒊−𝟏 𝒕𝒊 𝒒𝒖𝒑
𝒊  𝒒𝒅𝒐𝒘𝒏

𝒊  

1 0 300 0.4 0.8 

2 300 600 0.8 1.2 

Table 6: Initial conditions 

 

 

 

 

 

 

3.4.3 Parking-loading curbside management strategy 

The second application consists of a real-time curbside management for trucks deliveries in 

complex urban environments with signalized streets. Since traffic conditions can rapidly change 

and the presence of capacity reductions can yield to queue formation and spillback phenomena, 

the negative impact of trucks is minimized by re-allocating their delivery locations. This task could 

be ideally accomplished by means of traffic controller. 

In this case, the problem is formulated again, as a maximization of total outflow. Thanks to the 

MA optimization framework, minimization of delay and queue could be alternatively adopted as 

objectives without difficulty. Unlike the previous case, the decision variables consist only of the 

delivery locations 𝑑𝑖 of trucks i. The available locations for deliveries correspond to “slots” of 

length l each (20 meters). Hence, the problem turns into a combinatorial optimization problem. 

Each solution corresponds to an array specifying the delivery locations of each truck. No specific 

constraint is applied, except for the exclusion of already occupied locations from the range of 

available ones when assigning subsequent trucks.  

We investigate this problem on the same road stretch analyzed before and for the same period of 

time (600s), using a time step of 2s. In this case 10 trucks enter at random times and stop at the 

curbside for deliveries for a random period of time between 60s and 200s. Each truck is 

𝒊 𝒙𝒊−𝟏 𝒙𝒊 𝒌𝒊𝒏𝒊 

1 0 150 0.01 

2 150 300 0.02 
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characterized by a randomly assigned different speed, preferred delivery location and duration 

(Table 7). Like in the previous problem, the traffic light is characterized by an initial cycle time of 

120s and green time of 72s. The boundary and initial conditions are the same as those reported in 

Table 5 and Table 6. Also the parameters adopted for the fundamental diagram are unchanged 

from the previous case. 

Table 7: Moving bottlenecks’ characteristics and delivery stops description in the second 

optimization problem 

Moving 

bottleneck 

1 2 3 4 5 6 7 8 9 10 

Entry 

time (s) 

20 50 70 90 120 180 220 280 320 400 

Maximum 

speed 

(m/s) 

7 5 5 5 7 5 5 7 5 7 

Delivery 

location 

(m) 

90 150 110 130 70 90 170 130 210 190 

Delivery 

duration 

(s) 

60 120 100 150 90 200 100 60 120 60 

 

3.4.4 Results 

The traffic flows corresponding to the case study before and after the optimization procedure for 

the first and second optimization problem are shown respectively in Figure 5 and Figure 6.  

The evolution of the fitness function through several generations in both optimization problems 

suggests the designed MA converges to a maximum/minimum rather quickly (between the 10th 

and 15th iteration) regardless of the input parameters used (mutation rate probability, tournament 

size). From a computational perspective this result implies that the optimization algorithm can be 

limited to fewer generations without compromising the quality of the results. More interestingly, 

as several tests concerning the size of the population of the MA show, the quality of the solution 
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does not seem to be largely affected (Table 8 and Table 9). Indeed, in the first problem, increasing 

the size of the population from 20 to 50 seems to improve only by 2-3 percent the fitness function 

(on average), at the expense of the computational time, which is almost tripled. Similarly in the 

second problem, for an improvement of less than 2 percent, more than twice the computational 

time is required. 

The required computation time to calculate the objective function for each of the solutions created 

during the breeding procedure and accomplished by means of traffic simulation, varies between 

0.05 and 0.13 seconds depending on the complexity of the problem. 

Overall, this analysis suggests that, for optimization problem involving up to ten moving 

bottlenecks and one traffic light, it is possible to obtain fairly satisfactory solutions in a few tens 

of seconds, thanks to the fast algorithm introduced earlier, which we use to compute the solutions 

associated with multiple moving bottlenecks. 

Table 8: Computational performance of the algorithm for different population sizes (average 

across 20 tests) in the first problem 

 
Outflow (veh) Solution improvement (%) Computation time (s) 

Population 50 281 10.6 14.5 

Population 30 278 9.4 9.2 

Population 20 275 8.2 6.3 

 

Table 9: Computational performance of the algorithm for different population sizes (average 

across 20 tests) in the second problem 

 
Outflow (veh) Solution improvement (%) Computation time (s) 

Population 20 144.0 16.1 43 

Population 30 144.6 16.6 65 

Population 50 145.8 17.5 105 

 

As can be seen from Figure 5 and Figure 6, the proposed numerical scheme yields almost exact 

solutions, with no numerical diffusion nor approximations in the computation of the density. The 
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only errors introduced by the numerical scheme are related to the integration of the ODE 

corresponding to the vehicle trajectory, which is performed at discrete points. Since the solutions 

do not need to be computed everywhere as part of the optimization, the proposed scheme is 

considerably faster than other numerical schemes. For example solving the problem using the 

Godunov scheme on a 300×600 computational grid (as shown in Figure 7and Figure 8) would 

require 180,000 computations per solution of optimization, while the proposed numerical scheme 

requires only 1,030 computations per cycle in average. 
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Figure 7: Space-time-density diagram corresponding to the first case study before (above) and 

after (below) the optimization 
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Figure 8: Space-time-density diagram corresponding to the second case study before (above) and 

after (below) the optimization 
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3.5 CONCLUSION 

This chapter proposes a new semi-analytic numerical scheme that can be used to perform traffic 

simulations with the LWR model given initial, upstream, and downstream boundary conditions, 

as well as an arbitrary number of moving bottlenecks modeled as internal conditions. 

 Without relying on continuous flow or multi-class approximations, this scheme endogenously and 

efficiently accounts for the interaction between several moving (and fixed) bottlenecks and 

surrounding traffic. This numerical scheme is based on a Hamilton-Jacobi formulation of the LWR 

model, and results from the properties of the solutions to Hamilton-Jacobi equations and, in 

particular, the inf-morphism property.  

This semi-analytic numerical scheme is very accurate and very fast (fractions of a second to 

compute the internal conditions corresponding to several moving bottlenecks). Since it allows one 

to determine the trajectories of all moving bottlenecks without having to compute the solution on 

the entire computational domain, it is also very adapted to optimization problems. Other potential 

applications of this algorithm for include the integration of simulations into problems like model 

predictive control and optimization of trajectories.   

In the second part of the chapter, the benefits of this algorithm are demonstrated in two different 

optimization problems where fast simulations were required to evaluate the quality of the 

solutions. The two problems are solved by means of the MA heuristic, which is a combination of 

evolutionary (, such as GAs) and local-search methods. This approach is relatively new in the field 

of transportation engineering and is particularly suitable for connected and autonomous vehicles 

(C-AVs). It would enable C-AVs to dynamically modify their speeds in conjunction with signal 

timing and their delivery locations in order to minimize congestion. As the results of different tests 

confirm for the two applications presented, the MA can achieve significant improvements 

(between 8 and 17 percent) in relatively short times (between 6 and 105 seconds). 

The traffic optimization problems presented in this study are particularly designed to reduce the 

negative traffic impacts of trucks. While this issue has been widely acknowledged by both 

academics and practitioners (Allen et al., 2000; Dablanc, 2007; Jaller et al., 2013; USDOT, 2017), 

little has been done in regard to traffic management dedicated to this typology of vehicles. With 
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the oncoming technologic improvements in wireless communication, as well as computational and 

sensing technologies (Intelligent Transport Systems), the real world implementation of these 

strategies is a feasible possibility. 
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4. A SIMULATION FRAMEWORK FOR MODELING URBAN FREIGHT 

OPERATIONS IMPACTS ON TRAFFIC FLOWS  

Please cite this chapter as: Simoni, M. D., & Claudel, C. G. (2018). A simulation 

framework for modeling urban freight operations impacts on traffic networks. Simulation 

Modelling Practice and Theory, 86, 36-54. 

The authors confirm the contribution to the paper as follows: Study conception and design: Simoni, M.D., 

Claudel, C.G.; Data collection: Simoni, M.D.; Analysis and interpretation of results: Simoni, M.D.; 

Manuscript preparation: Simoni, M.D., Claudel, C.G. 

 

4.1 INTRODUCTION 

Efficient and accurate simulation models are critical for investigating the effects of urban freight 

distribution on traffic congestion and identifying appropriate travel demand and traffic 

management solutions. Urban freight distribution represents a major challenge in metropolitan 

areas. In the U.S., freight traffic accounts for 18% of the congestion costs, although they only 

represent 7% of urban travel (Schrank et al., 2015). Considerable pressure to find efficient and 

sustainable practices has been building up, particularly in recent years as urban deliveries continue 

growing with double-digit rates (Joerss et al., 2016). Among the different externalities associated 

with the last-mile of the delivery chain (pollution, congestion, safety), the limited parking 

availability for commercial vehicles is certainly a critical issue (Jaller et al., 2013; Nuzzolo et al., 

2016). A survey by Kawamura and Sriraj (2016) conducted in Chicago showed that trucks were 

illegally parked more than 28% of the time compared to 3% for passenger vehicles. Furthermore, 

recent studies have shown that the volume of deliveries and parking violations in residential and 

mixed land-use areas are comparable to those in commercial areas (Wang and Zhou, 2015; Chen 

et al., 2017). 

In this chapter, we present a hybrid traffic simulation-based framework suitable for the evaluation 

of last-mile urban freight operations and urban freight traffic policies. While analytical and 

statistical models provide a good indication of the consequences of last-mile delivery movements, 

their traffic impacts can be accurately identified only through traffic simulations. When 
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considering urban settings, characterized by high levels of traffic and signals, it is important to 

dynamically reproduce phenomena like the formation of queues and congestion spillbacks over 

the network. In this dissertation work, we choose a macroscopic flow model to reproduce the 

behavior of all traffic except for the delivery vehicles that are represented microscopically. 

Because of its macroscopic features, the proposed framework is computationally efficient and 

requires short simulation times (in the order of seconds) to reproduce traffic and deliveries on large 

networks. For this reason, unlike microscopic and mesoscopic models (see Section 1.2 for their 

definition), such a framework would be practical for studies requiring large numbers of 

simulations, such as optimization and real-time control problems. At the same time, since freight 

distribution is reproduced at a microscopic level, the framework also allows for detailed analyses 

of last-mile operations. As shown in this study, it is possible to couple the traffic simulation with 

a parking model to reproduce on-street parking and double-parking behavior of delivery trucks.  

The proposed approach is derived from the Traffic Flow Theory, more specifically from the 

macroscopic Lighthill–Whitham–Richards (LWR) model (Lighthill and Whitham, 1955; 

Richards, 1956) and from the concept of “moving bottlenecks” (Gazis and Herman, 1992; Newell, 

1993, Munoz and Daganzo, 2002). Freight movements can be reproduced as moving bottlenecks 

traveling across the network, which become “temporary fixed bottlenecks” when they perform 

deliveries (under certain conditions). Tracking the position of the delivery vehicles within the 

network is crucial to properly analyze their delivery operations.  Thus, the delivery tours are 

integrated into a network simulation so that vehicles can be explicitly tracked along their paths. 

One of the issues associated with the integration of fixed (and moving) bottlenecks into a 

macroscopic traffic flow model is the inherent hybrid nature of the bottleneck itself, which affects 

and is affected by the rest of traffic at the same time. For this reason, evaluating the traffic effects 

of freight deliveries and other freight-related services like crowdshipping is not a straightforward 

task. This requires the coupling between a vehicular model, encoded by an Ordinary Differential 

Equation (ODE), and a macroscopic traffic flow model, encoded by a Partial Differential Equation 

(PDE). To tackle this issue, we use a novel version of the Lax-Hopf formula, which also allows 
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reproducing delivery operations on the streets arbitrarily (at any internal point of the link and at 

any time instant of the simulation). 

The remainder of this chapter is organized as follows. First, we present a literature review of traffic 

models and analyses of freight operations in urban settings. Then, we describe the simulation 

framework, the simulation algorithms and its output. In the second part of the chapter, we present 

two applications in the City Logistics field where the simulation framework is used to evaluate the 

effects of possible strategies to tackle freight congestion due to delivery operations. Finally, we 

present some considerations and conclusions. 

4.2 MODELS AND STUDIES OF TRAFFIC IMPACTS OF URBAN FREIGHT MOVEMENTS 

Freight movements within cities are a significant source of congestion. Nevertheless, for a long 

time urban freight traffic operations have been overlooked (particularly compared to the passenger 

vehicle traffic), and traditional strategies aimed at reducing passenger travel demand were found 

to be less effective for freight demand.  

Freight operations represent a potential hindrance to traffic through double-parking which 

generates a blockage of the road. Such behavior, also referred to as a fixed bottleneck, determines 

a capacity reduction in presence of high traffic volumes, and might eventually yield to queues and 

spillbacks across the traffic network. Deliveries are rather inelastic to parking pricing and 

enforcement policies (Pluvinet et al., 2012; Halsey, 2013), and there are few practical alternatives 

to delivery trucks in urban areas (Jaller et al., 2013). City Logistic solutions, such as developing 

freight facilities (urban consolidation centers), modal adaptation (replacement of trucks with more 

environmentally friendly vehicles) and concentrating shipments are often hard to implement 

because of costs, physical constraints and additional delays (Rodrigue et al., 2016). Currently, only 

a few demand management solutions have been successfully implemented in some European and 

American cities (Russo and Comi, 2010; Holguin-Veras et al., 2011; McLeod and Cherrett, 2011). 

While a significant amount of studies has focused on the issue of car parking in urban areas, less 

attention has been paid to parking of freight vehicles. Only in the last ten years we have seen a 

growing interest in the last-mile delivery problem which has led to studies on impacts and solutions 
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for last-mile delivery operations (Aiura and Taniguchi, 2005; Patier et al., 2014; Marcucci et al., 

2015; Gardrat and Serouge, 2016; Comi et al., 2017; Munuzuri et al., 2017). However, not many 

of them have adopted or developed frameworks that explicitly account for dynamics between 

delivery vehicles and general traffic1.  

Chiabaut (2015) uses the Kinematic Wave Theory to investigate analytically the reduction of 

capacity on signalized arterials due to delivery maneuvers. Amer and Chow (2017) have recently 

presented an on-street parking equilibrium model to evaluate passenger and freight parking 

behavior. The effects of double-parking are reproduced as a temporary lane drop, while traffic 

conditions are evaluated based on the fundamental diagram relationship. Roca-Riu et al. (2017) 

also adopt an analytical approach to design shoulder lanes that can be dynamically used for 

delivery on a single link. Another proposed approach for modeling commercial parking consists 

of a statistical approach based on queueing theory and logistical models based on continuous 

approximations (Figliozzi and Tipagornwong, 2017). 

Other studies have adopted instead, simulation-based approaches, typically by integrating 

commercial software traffic simulators into delivery operation models. Nourinejad et al. (2014) 

for example, combined an econometric parking choice model with microscopic simulation using 

Paramics to evaluate parking policies on a few-blocks scenario in Toronto. Aditjandra et al. (2016) 

also adopted a microsimulation approach (based on AIMSUN) to analyze in detail the 

environmental impact of a large freight traffic generator (although they did not consider curbside).  

Ukkusuri et al. (2016) utilized Transmodeler to analyze the effects of an off-peak delivery program 

in Manhattan and compare the results with those from a regional travel demand model. Munuzuri 

et al. (2002) develop their own ad-hoc microsimulation to analyze double-parking and 

loading/unloading activity on a small network of four links. More recently, Munuzuri et al. (2013) 

adapted the software, Arena, for microscopic simulation of delivery operations to analyze 

pedestrian-friendly measures of a street in Seville. Lopez et al. (2016) proposed a framework based 

                                                 

1 In transport planning practice and research freight flows can be estimated and modeled macroscopically (not 

looking at the individual unit) by means of static models in “traditional” four-step transport planning models. 

However, these models do not represent properly traffic dynamics, and the delivery operations.  
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on microscopic traffic simulation to model deliveries and quantify their impacts on one arterial by 

deriving a Macroscopic Fundamental Diagram (MFD).  As the size of the case studies analyzed 

shows and as the authors themselves acknowledge, mesoscopic and microscopic simulations, are 

mainly suitable for the evaluation of small scenarios characterized by a handful of links and 

intersections. While microscopic models allow for detailed modeling of driving behavior, their 

computational costs and required calibration efforts often represent a barrier for simulation of 

larger scenarios. 

To the best of our knowledge, there has not been any formal study of network traffic dynamics of 

urban freight deliveries by coupling macroscopic traffic simulation with fixed and moving 

bottlenecks. In the following section, we present a simulation framework based on the LWR model 

and theory of moving bottlenecks.  

4.3 SIMULATION FRAMEWORK 

The proposed simulation framework (Figure 9) of delivery operations combines a detailed number 

of information on forthcoming deliveries (routes, location and duration of stops) with some general 

network characteristics (lanes, speed limits, signal settings), and traffic conditions (traffic 

demand). These inputs are used to derive a detailed description of the freight movements and their 

impacts on traffic flows.  In addition to these inputs and parameters, the simulation of delivery 

vehicles also requires a (discrete) parking model to describe the likelihood that parking (or double 

parking) can be found by the delivery vehicle. As such, the dynamics of the traffic flows can be 

described as a hybrid system, since the ODE describing the evolution of the delivery vehicle is 

hybrid, with three discrete modes (delivery vehicle traveling in traffic, delivery vehicle legally 

parked, or delivery vehicle double-parked and restricting traffic). In this study, the entire 

simulation framework is implemented in MATLAB. The network traffic simulation framework, 

which is based on a macroscopic link (LWR) and node model is described in Section 4.3.1. The 

delivery vehicle model that is used to track delivery vehicles’ operations is presented in Section 

4.3.2, and the parking model adopted in this study is described in Section 4.3.3.  
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Figure 9: Overview of the simulation framework 

4.3.1 Network traffic model 

Traffic on road networks is usually modeled by combining a link model that describes traffic flow 

on a single link, with a node model, which encodes the behavior of traffic at junctions. In this 

study, we adopt the macroscopic LWR model as the link model, which is solved by means of a 

Fast Lax-Hopf formula. The link model adopted is the LWR model (Section 3.2.1) which is soved 

by means of an extension of the Lax-Hopf formula (Section 3.2.2-3.2.3). In the present problem, 

the function 𝑐(𝑥, 𝑡) corresponds to peicewise linear initial, upstream, downstream and internal 

boundary conditions, where each linear piece is defined by: 

 

𝑐(𝑥, 𝑡) =

{
 
 

 
 

𝑐𝑖𝑛𝑖
𝑙 (𝑥)      𝑡 = 0, 𝑥 ∈ [(𝑙 − 1)Δ𝑥, 𝑙Δ𝑥]

𝑐𝑢𝑝
𝑗(𝑡)         𝑥 = 0, 𝑡 ∈ [𝑗Δ𝑡, (𝑗 + 1)Δ𝑡]

𝑐𝑑𝑜𝑤𝑛
𝑘(𝑡)      𝑥 = 𝐿, 𝑡 ∈ [𝑗Δ𝑡, (𝑗 + 1)Δ𝑡]

𝑐𝑖𝑛𝑡𝑛(𝑥, 𝑡)  𝑥 ∈ [𝑥𝑏,𝑛, 𝑥𝑒,𝑛], 𝑡 ∈ [𝑡𝑏,𝑛, 𝑡𝑒,𝑛]

 (4.1) 

 

where (𝑥𝑏 , 𝑡𝑏; 𝑥𝑒 , 𝑡𝑒) defines the space-time domain of the internal boundary condition. 
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In the remainder of the chapter, we assume that the initial, upstream, downstream and internal 

condition functions (4) are all piecewise linear functions. We further assume that the temporal step 

used to define the piecewise linear upstream and downstream boundary conditions is Δ𝑡, and that 

the spatial step used to define the piecewise linear initial condition of link 𝑖 is Δ𝑥𝑖 . 

We consider a problem involving an initial condition 𝑁𝑖𝑛𝑖(𝑥), an upstream boundary 

condition 𝑁𝑢𝑝(𝑡)  and a downstream initial condition 𝑁𝑑𝑜𝑤𝑛(𝑡). We also assume that the flux 

function is a triangular Fundamental Diagram with critical density 𝑘𝑐 and characteristic speeds 

within the range[−𝑤, 𝑣]. Furthermore, we assume an arbitrary number of fixed bottlenecks 

𝑁𝑐𝑖𝑛𝑡𝑛(𝑥, 𝑡) as defined in (4), whenever delivery vehicles restrict the capacity at their location (see 

Section 3.3 for further details). 

In order to compute traffic flows leaving and entering each link, and assuming that Δ𝑡 ≤
Δ𝑥

𝑣
 

(Courant–Friedrichs–Lewy condition), the solution at the upstream end 𝑁(𝑡, 0) of the link [0, 𝐿] 

can be computed as: 

 

 𝑁(0, 𝑡) =

{

min (𝑁𝑐𝑖𝑛𝑖𝑙 (0, 𝑡), 𝑁𝑐𝑖𝑛𝑖𝑙−1(0, 𝑡), 𝑁𝑐𝑢𝑝𝑗(0, (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡 , min
𝑛
𝑁𝑐𝑖𝑛𝑡

𝑛(0, 𝑡) )  𝑖𝑓 𝑡 ≤
𝐿

𝑤

min (𝑁𝑐𝑢𝑝𝑗(0, (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡, 𝑁𝑑𝑜𝑤𝑛
𝑘(0, 𝑡), min

𝑛
𝑁𝑐𝑖𝑛𝑡

𝑛(0, 𝑡))                                        𝑒𝑙𝑠𝑒

 
(4.2) 

 

where 𝑗 = 𝑖 − 1, 𝑘 = ⌊
𝑡−

𝑥𝑛𝑖𝑛𝑖
𝑤

Δ𝑡
⌋, 𝑙 = ⌊

𝑤𝑡

Δ𝑥
⌋ 

 

For any discrete time 𝑡 = 𝑖 ∙ 𝛥𝑡. Where n initial conditions 𝑐𝑖𝑛𝑖
𝑙  are identified on blocks of the same 

length such that 𝑥𝑖 = 𝑖Δ𝑥 (piecewise). The solution 𝑁(𝑡, 𝐿) at the downstream end of the link [0, 𝐿] 

corresponds to: 
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𝑁(𝐿, 𝑡)

= {
𝑚𝑖𝑛 {𝑁𝑐𝑖𝑛𝑖

𝑙 (𝐿, 𝑡), 𝑁𝑐𝑖𝑛𝑖
𝑙+1(𝐿, 𝑡), 𝑁𝑐𝑑𝑜𝑤𝑛𝑗(𝐿, (𝑖 − 1) ∙ 𝛥𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ 𝛥𝑡,min𝑛

𝑁𝑐𝑖𝑛𝑡𝑛(𝐿, 𝑡)}           𝑖𝑓     𝑡 ≤
𝐿

𝑣

𝑚𝑖𝑛 {𝑁𝑐𝑑𝑜𝑤𝑛𝑗(𝐿, (𝑖 − 1) ∙ Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡,𝑁𝑢𝑝
𝑘(𝐿, 𝑡),min

𝑛
𝑁𝑐𝑖𝑛𝑡𝑛(𝐿, 𝑡)}                                        𝑒𝑙𝑠𝑒     

 

 
(4.3) 

 

where 𝑗 = 𝑖 − 1, 𝑘 = ⌊
𝑡−

𝑥𝑛𝑖𝑛𝑖
𝑣

Δ𝑡
⌋, 𝑙 = ⌊

𝑣𝑡

Δ𝑥
⌋ 

 

The interested reader is referred to Mazare et al. (2011) for a full formulation of the Lax-Hopf 

problem and to Appendix I for a formal proof of the FLH for Eq. 4.2-4.3. 

The computation of the solutions at the boundaries (Eq.4.2-4.3) can be further simplified. Indeed, 

the minimum of the internal condition components: min
𝑛
𝑁𝑐𝑖𝑛𝑡𝑛(0, 𝑡) and min

𝑛
𝑁𝑐𝑖𝑛𝑡𝑛(𝐿, 𝑡) does not 

need to be computed for all possible values of n, given the following properties: 

 

Property 1: If 𝑗Δ𝑡 >
𝑥𝑒,𝑛

𝑤
+ Δ𝑡, then 𝑁𝑐𝑖𝑛𝑡𝑛(0, 𝑡) ≥ 𝑁𝑐𝑢𝑝𝑗(0, 𝑗Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡 

 

Property 2: If 𝑗Δ𝑡 >
𝐿−𝑥𝑒,𝑛

𝑣
+ Δ𝑡, then 𝑁𝑐𝑖𝑛𝑡𝑛(𝐿, 𝑡) ≥ 𝑁𝑐𝑑𝑜𝑤𝑛𝑗(𝐿, (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡 

 

The above properties are the consequence of the structure of the solutions 𝑁𝑐𝑖𝑛𝑡𝑛(⋅, 𝑡) on the 

upstream and downstream boundary. They imply that only one internal condition block influence 

the upstream and downstream boundary conditions at any given time. Hence, the solution at the 

boundaries (Eq. 4.2-4.3) can be rewritten as: 

 

𝑁(0, 𝑡)

=

{
  
 

  
 min (𝑁𝑐𝑖𝑛𝑖

𝑙 (0, 𝑡), 𝑁𝑐𝑖𝑛𝑖
𝑙−1(0, 𝑡), 𝑁𝑐𝑢𝑝𝑗(0, (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡 , min

𝑛 | 
𝑥𝑒,𝑛
𝑤
≤𝑗Δ𝑡≤

𝑥𝑒,𝑛
𝑤
+Δ𝑡

𝑁𝑐𝑖𝑛𝑡𝑛(0, 𝑡) )  𝑖𝑓 𝑡 ≤
𝐿

𝑤

min (𝑁𝑐𝑢𝑝𝑗(0, (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡, 𝑁𝑑𝑜𝑤𝑛
𝑘(0, 𝑡), min

𝑛 | 
𝑥𝑒,𝑛
𝑤
≤𝑗Δ𝑡≤

𝑥𝑒,𝑛
𝑤
+Δ𝑡

𝑁𝑐𝑖𝑛𝑡𝑛(0, 𝑡))                                     𝑒𝑙𝑠𝑒

 (4.4) 
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𝑁(𝐿, 𝑡)

=

{
 
 

 
 𝑚𝑖𝑛(𝑁𝑐𝑖𝑛𝑖

𝑙 (𝐿, 𝑡), 𝑁𝑐𝑖𝑛𝑖
𝑙+1(𝐿, 𝑡), 𝑁𝑐𝑑𝑜𝑤𝑛𝑗(𝐿, (𝑖 − 1) ∙ 𝛥𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ 𝛥𝑡, min

𝑛 | 
𝐿−𝑥𝑒,𝑛
𝑣

≤𝑗Δ𝑡≤
𝐿−𝑥𝑒,𝑛
𝑣

+Δ𝑡

𝑁𝑐𝑖𝑛𝑡𝑛(𝐿, 𝑡))   𝑖𝑓  𝑡 ≤
𝐿

𝑣

𝑚𝑖𝑛 (𝑁𝑐𝑑𝑜𝑤𝑛𝑗(𝐿, (𝑖 − 1) ∙ Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡, 𝑁𝑢𝑝
𝑘(𝐿, 𝑡), min

𝑛 | 
𝐿−𝑥𝑒,𝑛
𝑣

≤𝑗Δ𝑡≤
𝐿−𝑥𝑒,𝑛
𝑣

+Δ𝑡

𝑁𝑐𝑖𝑛𝑡𝑛(𝐿, 𝑡))                                       𝑒𝑙𝑠𝑒     

 (4.5) 

 

In order to model traffic throughout intersections, there is need of a generic macroscopic node 

model that respects some critical conditions identified by Lebaque and Khoshyaran (2005), 

Tampere et al. (2011), Flotterod and Rohde (2011) and Bliemer et al. (2014). These requirements 

are often referred as: satisfaction of links’ capacity constraints, conservation of flows, satisfaction 

of demand distribution constraints, maximization of flows (vehicles should proceed if there is 

available supply downstream), satisfaction of invariance principle (if the flows are restricted by 

demands, solutions cannot vary by increasing supplies and vice versa), and non-simultaneity of 

conflicting flows. In this study, we adopt the greedy “I-HFS algorithm” by Jabari (2016), which 

respects the abovementioned properties and efficiently derives solutions by staging movements 

according to any arbitrary priory rules. The algorithm (Algorithm 3) yields realistic solutions in 

several situations,, such as signalized intersections (with permitted and protected movements) and 

intersections between major and minor roads. For each node, characterized by I incoming links 

with potential sending flows 𝑠̅ and O outgoing links with potential receiving flows 𝑟̅, a turning 

proportion matrix fi,o (I x O) given a certain priority rule: 𝑃 = {𝑝1 , … , 𝑝𝐼}, the algorithm can be 

expressed as follows: 

Algorithm 3: Overview of the I-HFS algorithm 

Input: P(𝒑𝟏, … , 𝒑𝑰), 𝒓̅, 𝒔̅, fi,o 

Output: 𝒒 

 

 

𝒌 ← 𝟏  

𝒓̅ 𝟏 ← 𝒓̅  

FOR 𝒌 ≤ |𝑰|: 

𝒒𝒑𝒌 = 𝒎𝒊𝒏{𝒔𝒑𝒌 , 𝐦𝐢𝐧𝒐∈𝑶

𝒓̅ 𝒌

𝒇𝒑𝒌,𝒐 
 } 

 

𝒓̅ 𝒌+𝟏 = 𝒓̅ 𝒌 − 𝒒𝒑𝒌 ∙  𝒇𝒑𝒌,𝒐   

 

Priority rules, (vector of)  potential 

inflows, (vector of) potential 

outflows, turning proportions  

 

Vector potential receiving flows 

For each outgoing link 

 

 

Derive actual outflow 

 

Update potential receiving flows 
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𝒌 ← 𝒌 + 𝟏  

END FOR 

 

4.3.2 Parking model 

The traffic model can be coupled to a parking model in order to describe parking and 

loading/unloading behavior of delivery vehicles. Different models, like equilibrium and logit ones 

can be adopted to reproduce commercial parking behavior, depending on level of aggregation and 

number of factors considered (parking availability, price, and propensity of drivers of committing 

infractions). Neither developing a novel parking model nor identifying the most accurate is within 

the scope of this research, since the traffic model presented in this work, can be potentially coupled 

to any discrete parking model. 

In this study, we integrate into the simulation framework a parking model that can be dynamically 

applied each time a delivery truck reaches the link of delivery. The model is probabilistic and 

depends on network infrastructure features, such as the presence of delivery bays (dedicated 

parking for loading/unloading) and regular parking, and levels of parking demand. 

At the time t when the vehicle enters the link, it looks for any available delivery bay on the link. 

In case of failure (such facility does not exist or it is already occupied), it looks for an open or 

“regular” (on-street) parking spot. The probability of finding regular parking, which depends on 

the number of lots on the link and on the levels of parking demand, is expressed by means of a 

binomial distribution. In this version of the model, parking demand is given as input, but in more 

advanced model it could be derived from surveys or from land-use and travel data. Finally, in case 

of failure in finding regular parking the vehicles commits an infraction and double-parks. In this 

model, we assume the delivery vehicles to be rather “inelastic” and more inclined to double-park 

illegally rather than cruising to find an alternative location for the stop. This is a rather reasonable 

assumption as carriers mainly cares about proximity to the destination (Amer and Chow, 2017) 

and typically transfer the overall costs of fines to customers (Hawkins, 2013; Stock, 2014). 

The parking model is formulated as follows: 
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𝜑𝑑 = {
0               𝑖𝑓 𝑏 ≥ 0 

𝑝(1; 𝑥)             𝑒𝑙𝑠𝑒
 (4.6) 

 

where 𝜑𝑑 is a binary variable corresponding to double parking of the vehicle, 𝑏 corresponds to the 

number of available delivery bays and, the probability of double parking 𝑝(1; 𝑥) is derived 

according to the following binomial distribution: 

 

𝑝(1; 𝑥) = 𝛽(0, 𝑟, 𝑝) (4.7) 

 

where 𝛽 stands for the binomial cumulative distribution function given r on-street regular parking 

lots and parking demand p.  In this study, we assume p as a given parameter, however it future 

extensions of the model, it could be derived analytically based on several factors (traffic, time of 

the day, land use). 

The parking model is integrated within the simulation framework as a “parking routine” that is 

performed each time the vehicle enters the link of delivery. In order to account for changes of 

availability of commercial and regular lots due to delivery operations, b and r are updated at the 

beginning and at the end of each delivery. 

4.3.3 Delivery vehicle model 

There are two main aspects of simulating delivery operations on the urban networks that need to 

be considered. First, tracking down the vehicles traveling on the network based on real traffic 

conditions (accounting for signals and queues). Second, modeling the impacts of deliveries on 

surrounding traffic, when vehicles are double-parked. Delivery vehicle trips can be simulated at 

individual level by leveraging the cumulative property of the LWR model, while the traffic impacts 

of double-parking can be modeled as a temporary fixed bottleneck. 

In traffic flow theory, capacity restrictions and “slow” vehicles that represent obstructions of traffic 

stream are respectively referred as bottlenecks and moving bottlenecks. Moving bottlenecks have 

also been studied in the field of applied mathematics (Delle Monache and Goatin, 2014a,b; Delle 

Monache and Goatin 2016; Laurent-Brouty et al., 2017), where coupled PDE-ODE models are 
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used to reproduce the dynamics between car traffic flows and slow vehicles. In this study, we 

consider only vehicles with maximum speed equal to “regular” traffic. This is a reasonable 

assumption for most of delivery vehicles used by major carriers in urban settings where speeds are 

already reduced to comply with speed limits. In this case, the main obstruction to traffic flows 

occurs when delivery vehicles double-park at the curbside to accomplish their delivery. Then, if 

regular car flows are hindered by the vehicle, the bottleneck becomes active. Depending on the 

conditions of surrounding traffic, following Munoz and Daganzo (2002) and Daganzo and Laval 

(2005), it is possible to identify three possible cases where the vehicles can be active or inactive 

bottlenecks (Figure 10): inactivity due to low traffic volumes (𝑘 ≤ 𝑘𝐷), activity (𝑘𝐷 ≤ 𝑘 ≤ 𝑘𝑈), 

inactivity due to high traffic volumes (𝑘 ≤ 𝑘𝑈).  Hence, according to the Lax-Hopf formula, the 

status of the bottleneck is derived according to Eq. 3.21 (Section 3.2.5).  

The value of the Moskovitz function for any internal point 𝑥′ on the link (e.g., where double-parked 

delivery occurs) at time 𝑡′ can be calculated by extending the FLH formula, similarly to Jin (2015), 

as follows: 

 

𝑁(𝑥′, 𝑡′)

=

{
  
 

  
 min (𝑁𝑐𝑖𝑛𝑖

𝑙 (𝑥′, 𝑡′), 𝑁𝑐𝑖𝑛𝑖
𝑙−1(𝑥′, 𝑡′), 𝑁𝑐𝑖𝑛𝑖

𝑚 (𝑥′, 𝑡′) , 𝑁𝑐𝑖𝑛𝑖
𝑚+1(𝑥′, 𝑡′), min

𝑛 
𝑁𝑐𝑖𝑛𝑡𝑛(𝑥′, 𝑡′) )      𝑖𝑓    𝑣𝑡′ ≤ 𝑥′ ≤ 𝐿 − 𝑤𝑡′

min (𝑁𝑐𝑖𝑛𝑖
𝑚 (𝑥′, 𝑡′), 𝑁𝑐𝑖𝑛𝑖

𝑚+1(𝑥′, 𝑡′), 𝑁𝑐𝑑𝑜𝑤𝑛𝑗(𝑥′, 𝑡′) , min𝑛 
𝑁𝑐𝑖𝑛𝑡𝑛(𝑥′, 𝑡′) )        𝑖𝑓  𝑣𝑡′ ≤ 𝑥′  𝑎𝑛𝑑  𝐿 − 𝑤𝑡′ ≤ 𝑥′

min (𝑁𝑐𝑖𝑛𝑖
𝑙 (𝑥′, 𝑡′), 𝑁𝑐𝑖𝑛𝑖

𝑙−1(𝑥′, 𝑡′), 𝑁𝑐𝑢𝑝𝑘(𝑥′, 𝑡′) , min𝑛 
𝑁𝑐𝑖𝑛𝑡𝑛(𝑥′, 𝑡′) )  𝑖𝑓  𝑣𝑡′ ≥ 𝑥′ 𝑎𝑛𝑑  𝐿 − 𝑤𝑡′ ≥ 𝑥′

min (𝑁𝑐𝑢𝑝𝑗(𝑥′, 𝑡′), 𝑁𝑑𝑜𝑤𝑛
𝑘(𝑥′, 𝑡′), min

𝑛 
𝑁𝑐𝑖𝑛𝑡𝑛(𝑥′, 𝑡′))                                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4.8) 

 

where 𝑙 = ⌊
𝑥′+𝑤⋅𝑡′

Δ𝑥
⌋, 𝑚 = ⌊

𝑥′−𝑣⋅𝑡′

Δ𝑥
⌋, 𝑗 = ⌊

𝑡′

Δ𝑡
−
𝐿−𝑥′

w⋅Δ𝑡
⌋, 𝑘 = ⌊

𝑡′

Δ𝑡
−

𝑥′

v⋅Δ𝑡
⌋ with Δ𝑥 and Δ𝑡 corresponding 

respectively to the space step and time step defined in Eq. 4 (boundary conditions). In the specific 

case of vehicle performing deliveries at the curbside, 𝑥0 corresponds to the position of the delivery 

d, 𝜃𝑑 within the link, and 𝑣𝑚𝑎𝑥 is set to equal to 0 because the vehicle is standstill. We assume that 

𝜃𝑑 is in the space interval [0 + 𝑤 ∙ ∆𝑡; 𝐿 − 𝑣 ∙ ∆𝑡]. Based on that, it is possible to determine whether 

the bottleneck is active as like in Section 3.2.5. 
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In this case 𝑞𝑟, which is the maximum passing rate of the fixed bottleneck, the formulation of 𝑞𝑟 

corresponds to: 

 

𝒒𝒓 =
𝒖 ∙ 𝒌𝒄 ∙ (𝒏𝒍 − 𝟏)

𝒏𝒍
 

(4.9) 

 where 𝑢 stands for the free flow speed, 𝑘𝑐 is the critical density and 𝑛𝑙 is the number of lanes. For 

each time interval the bottleneck is active, a new internal condition 𝑁𝑐𝑖𝑛𝑡𝑛   is created.  

 

Figure 10: Fixed bottleneck 

Some of the main advantages of using the Lax-Hopf computational method compared to other 

well-known methods, such as the Cell Transmission Model (CTM) (Daganzo,1995) are its 

accuracy (given its semi-analytical nature) and the possibility of tracking delivery vehicles 

traveling across each link. Furthermore, delivery operations can be reproduced arbitrarily without 

any space-time constraint due to the discretization of the model (they can occur at any internal 

point of the link and do not have to match with the time simulation step). Thanks to these 

properties, it is relatively straightforward to explicitly track delivery vehicles’ trajectories and 

reproduce their delivery operations without any approximation error. The ability of accurately 
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tracking deliveries along their routes is important in order to consider carriers’ perspective on the 

problem. 

4.5 ALGORITHMS AND OUTPUT 

The proposed pseudocodes to perform a network simulation while tracking delivery vehicles 

traveling across the network and inside each link are described respectively in Algorithm 1 and 

Algorithm 2. For each simulation time step, the inflows and outflows of each network link are 

calculated using and the delivery vehicles’ positions are updated according to the Network Traffic 

Model and Parking Model (Algorithm 4). Inside each link crossed by any delivery vehicle, the 

Delivery Model (in conjunction with the link traffic model) is used to derive the trajectories of the 

delivery vehicles and their corresponding internal conditions in case of double-parking (Algorithm 

5). To illustrate the capabilities of these algorithms, we present the following example of a 5-

minutes simulation of two delivery vehicles in a simple signalized network of 25 links. The first 

vehicle, that enters the network from link 1 after 10 seconds, performs a delivery at link 3 and 

double-parks (since it is not able to find a parking spot), causing a congestion spillback in the 

upstream links (Figure 11a). In case of regular parking, such vehicle would not produce any traffic 

disruption (Figure 11b). The second vehicle that enters from link 16 after 10 seconds, performs a 

delivery at link 12, while being regularly parked. The impacts of double-parking of the first vehicle 

are also shown at network level, in Figure 12a-b, where the links’ densities for a situation of 

double-parked and a regularly parked delivery are compared with each other after 2 minutes of 

simulation. In addition to simulating the traffic flow on each link, the proposed algorithm generates 

detailed information concerning each delivery tour (Table 11), in the form of vehicle trajectories. 
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Table 10: Algorithm notation 

𝒉 ∈ 𝑯 link h in the set of H total links in the network 

𝒋 ∈ 𝑱 node n in the set of N total nodes in the network 

𝒛 ∈ 𝒁 ⊂ 𝑱 Origin node q in the subset of origin nodes Q 

𝒘 ∈ 𝑾 ⊂ 𝑱 Destination node w in the subset of destination nodes W 

                𝒊 ∈ 𝑰𝒋 Inbound link in the set of incoming links into node n 

𝒐 ∈ 𝑶𝒋 Outbound link in the set of outgoing links from node n 

𝒓𝒉, 𝒔𝒉 Link h demand and supply flow at time t 

𝒒𝒉,𝒊, 𝒒𝒉,𝒐 Actual link h inflow and outflow at time t 

𝜹𝒛(𝒕) ∀𝒛 ∈ 𝒁 Traffic demand in origin node 

𝜸𝒘(𝒕) ∀𝒘 ∈ 𝑾 Traffic supply in destination node 

𝑵𝒊𝒏𝒊,𝒍 Set of initial conditions of link l 

𝑵𝒊𝒏𝒕,𝒍 Set of internal conditions of link l 

𝑵(𝒙, 𝒕) Moskovitz function at the position x and time t 

𝒗 ∈ 𝑽 Vehicle in the set of V (delivery) vehicles 

𝒕𝒗 Entry time of vehicle v in the network 

𝝆𝒗̅̅ ̅ Route r of the vehicle v (vector) 

𝒅 ∈ 𝑫𝒗 Delivery in the set of D delivery tour of vehicle v 

𝝈𝒅 Link location of delivery d 

𝝉𝒅 Duration of delivery d 

𝜽𝒅 Position of delivery d 

𝝋𝒅 Binary variable expressing parked or double-parked delivery 

𝜫(𝒗,𝒉, 𝒕, 𝑵𝒗,𝒍(𝒕)) Data structure to track vehicles across the network. It 

contains the label of the vehicle, link position, time entered 

the link, Moskovitz function corresponding to the vehicle v 

entering link h 

𝜱(𝒗, 𝒉, 𝒕, 𝑵,𝝋𝒅, 𝝉𝒅, 𝜽𝒅) Data structure to track vehicles across the link. 
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Algorithm 4: Pseudocode for the simulation of deliveries at network level 

Input:  Network G(h,j), 𝑵𝒊𝒏𝒊,𝒍 ∀𝒉 ∈ 𝑯, V, 𝑹𝒗, 𝑫𝒗, 𝜫 = {∅}, 𝜱 = {∅},  

Output: 𝒒𝒉,𝒊, 𝒒𝒉,𝒐 ∀𝒉 ∈ 𝑯, 𝜫 

 

%check if any truck enters the network  

FOR 𝒗 ∈ 𝑽: 

IF t<tv<t+dt THEN: 

             {𝒗, 𝝆𝒗̅̅ ̅(𝟏), 𝒕𝒗} 𝚷 

ENDIF 

ENDFOR 

%For each time step of the traffic simulation model: 

FOR 𝒕: 
FOR  𝒋 ∈ 𝑱: 

FOR 𝒊 ∈ 𝑰𝒋: 

%check if there is any truck within the link 

FOR 𝒌 ∈ |𝚷|: 
IF i= 𝜫(𝒌, 𝟐) THEN: 

              𝜫(𝒌, : ) 𝜱  

%check if the truck has just entered the link 

IF t=𝜫(𝒌, 𝟑)  THEN: 

  % obtain the value of Moskovitz function when it enters 

  𝑵𝒗,𝒉(𝒕) → 𝚽(𝒌, 𝟒) 

  % check if the truck has a delivery on the link 

FOR 𝒅 ∈ 𝑫𝒗: 

 IF i=𝝈𝒅THEN: 

             %run Parking Model to derive whether the 

truck finds parking or double-park 

             CALL Parking Model (Eq.8-9)  𝝋𝒅 

            𝝋𝒅 → 𝚽(𝒌, 𝟓) 
             𝝉𝒅 → 𝚽(𝒌, 𝟔) 

                                                                                                        𝜽𝒅 → 𝚽(𝒌, 𝟕) 
ENDIF 

ENDFOR 

ENDIF 

ENDIF 

ENDFOR        

%run extended link model  

CALL Extended Link Model (see Algorithm 3)  𝒓𝒊, 𝚽, 𝑵𝒊𝒏𝒕,𝒍 

𝜱𝜫(𝒌, : )  
ENDFOR 

 

FOR 𝒐 ∈ 𝑶𝒋: 

%run regular link model  

CALL Link Model based on Eq. 6-7 𝒔𝒊 
ENDFOR 

 

IF 𝒋 ∈ 𝒁 THEN: 

%compute inflow for origin node 
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𝒒𝒉,𝒊 = 𝐦𝐢𝐧{𝒓𝒍, 𝜹𝒋 } ∀𝒍 ∈ 𝑰𝒋  

ELSEIF 𝒏 ∈ 𝑾 THEN: 

%compute outflow for destination node 

𝒒𝒉,𝒐 = 𝐦𝐢𝐧{𝒔𝒍, 𝜸𝒋 } ∀𝒍 ∈ 𝑶𝒋  

ELSE: 

CALL Node Model (see Algorithm 1) 𝒒𝒉,𝒊, 𝒒𝒉,𝒐 ∀𝒉 ∈ 𝑯 

END IF 

END FOR 
 

%check if there is any truck leaving any link 

FOR 𝒉 ∈ 𝑯 : 

FOR 𝒗 ∈ 𝑽: 

IF 𝑵𝒅𝒐𝒘𝒏,𝒉 ≥ 𝜫(𝒗, 𝟒) THEN: 

%identify next link in the truck’s route and remove it if it is leaving the network 

FIND link index k of 𝜫(𝒗, 𝟒) in 𝝆𝒗 

        IF 𝒌 < |𝝆𝒗| THEN: 

              𝝆𝒗(𝒌 + 𝟏) 𝜫(𝒗, 𝟒) 
        ELSEIF: 

              DELETE  𝜫(𝒗, : ) 
       END IF 

END IF 

END FOR 

         END FOR 

END FOR 

 

 

 

Algorithm 5: Pseudocode for the simulation of Link Model with deliveries 

Input: t, 𝑫𝒗, 𝚽, N(0,[0,t]), N(L,[0,t]),𝑵𝒊𝒏𝒊, 𝑵𝒊𝒏𝒕 
Output: 𝒓𝒊, 𝚽, 𝑵𝒊𝒏𝒕 
 

%computation of inflow 

Eq.6  𝒓𝒊 
 

%check if there are mbs on the link 

IF |𝚽| ≥ 𝟏 THEN: 

 FOR 𝒋 ∈ |𝚽|: 
%check if the mb has a delivery on the link 

IF 𝚽(𝒋, : ) > 𝟎 THEN: 

%calculate the value of the Moskovitz function at the delivery location 

𝚽(𝒋, 𝟕) → 𝜽𝒅 

Lax-Hopf Algorithm (Eq. 14) 𝑵(𝜽𝒅, 𝒕) 

%check if the delivery has started at this interval 

IF 𝑵(𝜽𝒅, 𝒕) ≥  𝚽(𝒋, 𝟒)  THEN: 

%derive exact initial time delivery has started with Bisection Algorithm 

Bisection Algorithm → 𝒕𝒔𝒕𝒂𝒓𝒕 
Reset 𝚽(𝒋, 𝟒)   = ∞ 
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%check if the vehicle is double-parking 

IF 𝚽(𝒋, 𝟓) = 𝟏 THEN: 

%check if the vehicle is an active moving bottleneck 

Derive 𝑵𝒊𝒏𝒕 based on Eq. 10-11 

END IF                  
%check  if delivery has finished 

IF (𝒕 − 𝒕𝒔𝒕𝒂𝒓𝒕) ≥ 𝚽(𝒋, 𝟔) =THEN: 
%calculate new label 

                             Lax-Hopf Algorithm (Eq. 14) 𝑵(𝜽𝒅, 𝒕) 
                            𝑵(𝜽𝒅, 𝒕) → 𝚽(𝒋, 𝟒)                              

END IF 

END IF 

END IF 

END FOR 

END IF 
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(a) 

 

(b) 

Figure 11: Space-time-density diagram corresponding to double-parked delivery (a) and 

regularly parked delivery (b) 
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(a)  

(b)  

Figure 12: Network densities at time t=120s corresponding to double-parked delivery (a) and 

regularly parked delivery (b). Green corresponds to k/kc<1, yellow corresponds 

to1< k/kc<1.5 and red corresponds to k/kc>2. 
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Table 11: Delivery tours simulation output 

Label Entry 

link 

Entry 

time (s) 

Delivery 

link 

Stop 

location (s) 

Stop 

duration (s) 

Regular 

parking 

Exit 

Link 

Path Exit time 

(s) 

1 1 10 3 40 120 No 15 [1,3,5,24,15] 205 

2 16 10 12 40 120 Yes 2 [16,14,12,11,21,4,2] 224 

 

4.6 APPLICATIONS 

In order to illustrate the potential applications of the developed simulation framework, we present 

and discuss the results of different simulations representing alternative urban freight distribution 

scenarios. First, we show the impacts of deliveries on a realistic urban traffic network. Then, by 

means of the proposed simulation approach, we analyse two possible city logistics solutions: 

managing the time of deliveries by shifting them to off-peak traffic hours, and managing the 

curbside space of deliveries by controlling their locations. The first strategy could be achieved by 

providing incentives or introducing regulations (Holguin-Veras, 2008; Zalewski et al., 2012). One 

possible way to achieve the second strategy would consist in identifying critical streets or areas 

where deliveries should be prohibited (Munuzuri et al., 2012). Depending on data availability and 

information technologies, this measure could be implemented more or less dynamically (in terms 

of time-windows). 

The investigations involve the most central area (about 0.86 square kilometres) of the Austin 

downtown network (Figure 13). The network is characterized by 201 links and 110 nodes. Each 

link has between 1 and 3 lanes and the majority of the intersections is signalized (about 90%). For 

simplicity, in this study, we only model green/red phases and we adopt the same triangular 

fundamental diagram for all links with: 𝑞𝑚𝑎𝑥=0.4625 veh/s, v=12.5 m/s, and 𝑘𝑗=0.1295 veh/m.  

The streets with available regular parking and delivery bays are indicated in Figure 14. Considering 

the commercial and office land use of the studied area, the occupancy rate of on-street shared 
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parking during the day is assumed 90% between 08:00 and 17:00, decreases to 80% between 

17:00-24:00, and reaches 10% between 24:00-06:00 (Litman, 2015). 

First, the impacts of different levels of urban freights are investigated during a time window of 20 

minutes for an average morning peak hour (8:00-8:20). Information about traffic demand and 

travel times during different hours of the day is retrieved from the “Bluetooth Travel Sensors - 

Individual Address Files (IAFs)” (City of Austin Transportation Department, 2017). 

Assuming a share between 5%-10% the urban goods traffic in the total traffic (Allen et al., 2014; 

Nuzzolo et al., 2016) and considering only light-duty and medium-duty deliveries, we simulate a 

variable number of 25-100 vehicles completing deliveries in the studied area. 

Delivery locations and routes can vary considerably depending on type of product (e.g. parcels, 

groceries) and service provided (e.g. regular VS same day delivery service). In this study, we 

assume each vehicle to perform a delivery tour with a variable number of stops ranging between 

1 and 3 (Punakivi and Saranen, 2001). The delivery tours are calculated by solving a Vehicle 

Routing Problem (VRP) with fixed origin (entry link) and destination (exit link). The average 

delivery stop duration is assumed to randomly vary between 1 and 5 minutes based on Munuzuri 

et al. (2012) and Conway et al. (2016). 
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Figure 13: Austin downtown network (original source: Google Earth) 
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Figure 14: Austin downtown regular parking (highlighted streets) and commercial parking 

(squares) 

The effects of delivery operations on traffic flows are measured by three different indicators: the 

total network efficiency, the average network speed, and the total network delay.  

The average network speed 𝑈(𝑇) is calculated as a weighted mean of all links’ speed 𝑢ℎ calculated 

at each time step t through the simulation T,  

𝑈(𝑇) =
∑ ∑ 𝑢ℎ(𝑡) ∙ 𝐿ℎ

𝐻
ℎ

𝑇
𝑡

∑ ∑ 𝐿ℎ
𝐻
ℎ

𝑇
𝑡

 (4.10) 

where 𝐿ℎ corresponds to the length of link h. The total network efficiency is adopted from Brilon 

(2000) and expresses the performance of the network as production per time unit, rather than 

considering demand, capacity and quality of the flows as separate indicators. The Traffic 

Efficiency is defined as: 
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𝐸 = 𝑄(𝑇) ∙ 𝑈(𝑇) (4.11) 

where U represents the average speed (km/h) over the network, and 𝑄(𝑇) the cumulative outflow 

during the simulation time T(h) measured as:  

𝑄(𝑇) =∑(𝑁𝑑𝑜𝑤𝑛,ℎ(𝑇) − 𝑁𝑑𝑜𝑤𝑛,ℎ(0))

𝐻

ℎ

 (4.12) 

where 𝑁𝑑𝑜𝑤𝑛,ℎ(𝑇) and 𝑁𝑑𝑜𝑤𝑛,ℎ(0) correspond respectively to the value of the Moskovitz function 

at the end and beginning of the simulation, calculated at the downstream end of each link ℎ in the 

network. 

The total network delay 𝐷(𝑇), which is expressed as vehicle loss hours is given by the sum of the 

differences between the cumulative curves of arrivals and departures at each interval ∆𝑡, for each 

link:    

𝐷(𝑇) =∑(∑𝛼 ∙ (𝑁𝑢𝑝,ℎ(𝑡 + ∆𝑡) − 𝑁𝑑𝑜𝑤𝑛,ℎ(𝑡)) ∙ ∆𝑡

𝑇

𝑡=1

)

𝐻

ℎ

 (4.13) 

where 𝛼 corresponds to an adjustment factor used to correct errors due to time discretizations. The 

effects of traffic (and indirectly delivery operations) on carriers’ efficiency is measured as a 

proportion of completed tours (where the vehicle performs all the deliveries and exit the network). 

4.6.1 Off-peak deliveries  

Given the stochastic nature of the parking model, we perform 100 simulation runs per scenario 

characterized by the same level of freight demand, but with randomized delivery configurations 

(routes, stops). The time definition (time step) adopted in the simulations corresponds to 2 seconds, 

which is higher than in most macroscopic network traffic simulations. Each simulation, which is 

performed on Matlab with a 2.3 GHz processor, requires about 7-10 seconds, depending on the 

number of delivery operations.  

The reference scenario of Austin downtown, during the morning peak, with no delivery is 

characterized by an average speed of 20.2 km/h, a network efficiency of 65,911 veh-km/h, and a 

total delay of 382.0 veh-loss hours. For increasing numbers of vehicles performing deliveries in 

the network, the amount of parking infractions rises and the overall traffic network performance 
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deteriorates significantly, as shown in Table 12. Whereas the available downtown parking supply 

can accommodate about 39% of the commercial parking demand for a limited amount of deliveries 

(97 stops), with a 100% increase of freight operations (201 stops) less than 18% of the demand is 

satisfied.  

As expected, changes in traffic performance show a non-linear trend. As the number of deliveries 

grows, traffic conditions worsen at an increasing rate: an addition of 25 trucks from 75 to 100 has 

higher impacts than the same increase from 50 to 75. In addition to a general decrease of 

performance, the overall network travel time reliability diminishes (corresponding to an increase 

of standard deviation of average speed) as the number of trucks in the system increases. As it is 

possible to see in Figure 15, the increase of negative skewness indicates a growth of the difference 

in average network speed between the “worst” and “best” simulations. This corresponds to higher 

chance of traffic breakdowns (where significant portions of the network are congested) caused by 

double-parking maneuvres of delivery vehicles.  

In line with the traffic results, the efficiency of deliveries seems to be worsened by the delivery 

operations themselves. The average time to complete one delivery increases by almost 1 minute 

and the number of incomplete tours increases by about 2% as the number of delivery vehicles 

entering the network increases from 50 to 100. 

 

Table 12: Impacts on traffic and freight operations of urban freight traffic during the morning 

peak 

 
25 trucks 50 trucks 75 trucks 100 trucks 

Change of Total Network Delay (%) 0.7 1.6 2.1 3.1 
Change of Network Efficiency (%) -1.1 -1.8 -2.5 -4.4 
Change of Average Network Speed 
(%) 

-1.4 -3.1 -4.3 -6.0 

Travel Time Variability (𝝈) 0.739 0.860 0.946 1.026 
Average Number of Parking 
Infractions 

34.6 62.1 95.8 133.5 

Average Time per Delivery (min) 5.1 5.3 5.6 5.8 
Average Incomplete Tours (%) 14.0 14.2 14.9 15.8 
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Figure 15: Network travel time reliability for different levels of freight traffic during the morning 

peak 

 

In order to identify the potential benefits of a shift of delivery operations to the off-peak hours (late 

evening or early morning), we perform an additional series of simulations for the same levels of 

freight operations in Austin downtown with nighttime traffic and parking availability. In this case, 

as shown in Table 13, delivery operations do not yield any significant worsening of traffic 

conditions (less than 0.2%), regardless of their number. The amount of double-parked operations 

considerably decreases (by more than 50%) and their impacts are almost none because of the lower 

levels of traffic. Even for higher levels of freight demand, the average network speed has less than 

0.1 km/h variation from simulation to simulation (Figure 16), meaning that the performance of the 

traffic system is overall stable. This aspect would be particularly important for carriers as reliable 

travel times would allow for tighter delivery schedules. 

The efficiency of carriers’ operations is also improved and overall much faster than those in the 

morning peak (average time for delivery below 5 minutes and about 5% of incomplete tours). 
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Hence, rescheduling delivery operations from the morning peak hours to off-peak hours, from both 

traffic and operational efficiency perspective, could determine considerable benefits. 

 

Table 13: Impacts on traffic and freight operations of urban freight traffic during the night 

 
25 trucks 50 trucks 75 trucks 100 trucks 

Change of Total Network Delay (%) 0.0 0.1 0.1 0.2 
Change of Network Efficiency (%) 0.0 0.0 0.0 -0.1 
Change of Average Network Speed 
(%) 

0.0 0.0 0.0 0.0 

Travel Time Variability (𝝈) 0.013 0.013 0.014 0.015 
Average Number of Parking 
Infractions 

12 26 38 55 

Average Time per Delivery (min) 4.8 4.9 4.9 4.9 
Average Incomplete Tours (%) 4.8 5.8 5.1 4.8 

 

 

Figure 16: Network travel time reliability for different levels of freight traffic during the morning 

peak 
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4.6.2 Delivery interdiction on critical streets 

The delivery interdiction on specific links is modeled by modifying the delivery routes with stops 

on the banned links such that their stop is reassigned to an adjacent link. When the delivery location 

is modified, the stop duration is increased by 2 minutes per each additional link of distance to 

account for the increased walking distance between the vehicle and the final destination. 

The marginal network effects of restricting deliveries on a single link are investigated by 

performing a series of network simulations characterized by the Austin morning peak traffic 

conditions and 100 vehicles performing deliveries within a time window of 20 minutes. In order 

to provide more reliable results, for each possible link closure to deliveries (only links with 2 or 3 

lanes are analyzed) we perform 50 simulations for a total of 6,750 simulations. By means of this 

procedure, it is possible to map the effects of each link’s restriction from deliveries as a change of 

the average total network speed (Figure 17), although for the majority of the streets, the link’s 

closure determines an overall worsening of network performance (1-3%) because of increased 

numbers of double-parking infractions and longer stops. However, for about 22% of the analyzed 

scenarios, the average network speed can be slightly increased by 1-2% (Figure 18). In most of 

these cases, the improvements occur when the chosen link is characterized by high levels of traffic 

and its adjacent links can accommodate extra demand. Carriers’ delivery performance does not 

seem particularly compromised by this measure since the delivery tours have similar performance 

increases and decreases (Figure 19). 
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Figure 17: Change of average total network speed per link delivery restriction (red: increase of 

speed; green: decrease of speed)2 

                                                 

2 Black corresponds to single-lane links that have not been analyzed. 
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Figure 18: Distribution of changes of average network speed per link restriction 

 

Figure 19: Distribution of changes of incomplete tours per link restriction 

Based on the results of this analysis, we investigate the impacts of restricting from deliveries a set 

including the 5 links that yielded the highest network performance improvements in the previous 
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experiment (Table 14). Interestingly, for high numbers of freight operations (e.g. 100 trucks), the 

measure does not produce considerable improvements of the network performance (around 0.5%). 

This result implies that, although the closure of some single links could be beneficial, their effects 

are not additive when closed in combination with each other. However, as the reduced values of 

standard deviation indicate, the traffic conditions seem to become more stable. The carriers’ 

performance does not seem to be affected by this measure either, as the average delivery times are 

unvaried. For relatively low levels of freight demand (below 50 trucks), the benefits of link closure 

are negligible because of the limited amount of delivery operations on the closed links.  

 

Table 14: Impacts on traffic and freight operations of closure of a set of 5 links from urban 

freight deliveries 

 
25 trucks 50 trucks 75 trucks 100 trucks 

Change of Total Network Delay (%) 0.7 1.2 1.6 2.8 
Change of Network Efficiency (%) -1.1 -1.5 -1.8 -3.8 
Change of Average Network Speed 
(%) 

-1.4 -2.9 -3.6 -5.5 

Travel Time Variability(𝝈) 0.250 0.303 0.280 0.568 
Average Number of Parking 
Infractions 

34.6 64.8 96.2 134.5 

Average Time per Delivery (min) 5.1 5.3 5.6 5.8 
Average Incomplete Tours (%) 14.0 13.2 10.5 16.3 

4.7 CONCLUSION 

Urban freight movements have a negative impact on the transportation network because of their 

lower speed, their reduced maneuverability, and their frequent stops for deliveries. Conversely, 

high levels of traffic delay truck deliveries and compromise the performance and reliability of 

freight distribution, ultimately increasing the overall cost of the carriers. The main challenge is 

that the supply in terms of road and curbside capacity does not usually meet the overall demand of 

different modes (cars, trucks, buses). 
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It is important to employ simulation tools that can provide accurate insight into traffic dynamics 

and delivery operations to properly evaluate policy and traffic management solutions. In this study, 

we present a (dynamic) traffic simulation framework designed for the analysis of the impact on 

urban freight operations. Its main characteristic exists in the hybrid nature as it reproduces general 

traffic behavior at a macroscopic level (LWR model) and urban freight operations at a microscopic 

level (vehicles are tracked along their routes). The framework leverages on the mathematical 

properties of the Lax-Hopf solution method of LWR model to compute traffic flows and 

obstructions created by delivery vehicles that are considered temporary fixed bottlenecks. This 

simulation framework can effectively reproduce traffic dynamics, such as triggering of congestion, 

queue spillbacks and interactions with traffic signals all together. Thanks to the high efficiency of 

its solution method, it can be easily implemented on large networks without having to worry about 

computational effort (with simulation time in the order of seconds). At the same time, the 

possibility of tracking vehicles in detail allows a realistic reproduction of the delivery process: 

operations can occur at any time and point of the link without relying on any space-time 

discretization. The traffic simulation model can be integrated with any generic (discrete) parking 

model in order to reproduce delivery vehicles’ parking behavior in consistency with the 

infrastructure supply and demand. In future research, the accuracy of parking behavior could be 

improved by accounting for traffic patterns, time of day and land use. Furthermore, application of 

the simulation to real-world case studies would require more detailed information about freight 

and passenger parking demand from surveys and land-use data.    

Thanks to its features, the proposed framework is particularly suitable for the evaluation of City 

Logistics measures on large networks of both traffic impacts and efficiency of delivery operations.  

We show that by investigating the impacts of two possible measures for a realistic scenario of 

downtown Austin: first, moving urban freight delivery traffic from the morning peak to the off-

hours, and second, prohibiting deliveries on certain streets. The results of several tests with 

different freight demands confirm how shifting part of the traffic from the morning peak to the late 

evening-early morning hours would be beneficial for both a traffic and operational efficiency 

perspective. Restricting streets from deliveries yields less straightforward outcomes. While, in the 
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majority of cases, closing a link is detrimental, for some vulnerable links, this solution could 

determine slight improvements. Nonetheless, this strategy does not yield significant improvements 

for larger sets of links. 

The findings from the first application’s experiment are in line with the previous literature. The 

outcomes of the experiments of the second application highlight the complexity of urban freight 

operations and suggest that the impacts of links closure depend on several factors like network 

morphology, traffic demand and interactions among delivery operations.  

Like nearly all first-order traffic flow models, the single commodity LWR is not suitable to model 

particular aspects of traffic (acceleration and deceleration, lane-changing) and to reproduce highly 

mixed traffic flows (with a large freight component of total traffic). Hence, the proposed 

framework would be mainly suitable for reproducing the effects of a limited fraction of the total 

traffic demand. 

Future work will deal with the application of this framework in more advanced urban freight traffic 

management and freight transport systems, involving optimization problems and real-time control 

strategies. 
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5. POTENTIAL IMPACTS OF CROWDSHIPPING SERVICES: A 

SIMULATION-BASED EVALUATION 

 

This chapter is currently under review in Transportation as “Potential Impacts of Crowdshipping 

Services: a Simulation-based Evaluation” by Simoni et al (2019). 

 
The authors confirm the contribution to the paper as follows: Study conception and design: Simoni, M.D., 

Marcucci E., and Gatta, V.; Data collection: Simoni, M.D., Marcucci E., and Gatta, V.; Analysis and 

interpretation of results: Simoni, M.D.; Manuscript preparation: Simoni, M.D., Marcucci E., Gatta, V., 

and Claudel, C.G. 

5.1 INTRODUCTION 

Freight transportation plays a fundamental role in the economic development of cities, but, at the 

same time, it threatens their livability given the increased road congestion, environmental impacts, 

and energy consumption. A crucial challenge to sustainable urban freight distribution is 

represented by the rise of e-commerce and door-to-door services that are determining significant 

changes in the delivery process.  

Overall, more direct-to-consumer deliveries are likely to cause lower freight consolidation because 

of the smaller loads and more frequent deliveries (Taniguchi and Kakimoto, 2003). This shift 

would inevitably generate a worsening of traffic and parking conditions, given the already limited 

road network capacity (even though some car shopping trips might be replaced). The growth of e-

commerce at double-digit rates3 calls for action in the near future to address the efficiency of the 

process and to internalize e-commerce’s negative externalities. In fact, the European Union is 

actively promoting research aimed at developing sustainable solutions to growing on-demand 

logistics (Horizon 2020). The phenomenon of online selling is revealing new challenges for private 

stakeholders as well, especially for couriers and parcel carriers, as they are confronted with rising 

“last-mile distribution costs”. Because of its low efficiency, the last mile represents the weak link 

                                                 

3 Around 10% annually in countries like Germany and the US, and more than 25% in Asian countries like China and 

India according to Capgemini (2013) 
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of the supply chain, accounting for up to 50% of the total costs in the parcel delivery market 

(Dablanc and Rodrigue, 2017).  

In recent years, the emergence of sharing economy models has enabled novel alternative services 

for parcel delivery, such as the “crowdshipping,” consisting of a declination of the “crowd 

sourcing” concept applied to the field of logistics. People can act as non-professional couriers and 

deliver small items for a monetary compensation (McKinnon, 2016; Rai et al., 2017). In 

crowdshipping, individuals traveling to a certain area can perform deliveries on their way, and 

businesses could rely on them to accomplish part of their deliveries. Such integration of personal 

and freight transport is based on a matching process between demand (for deliveries) and supply 

(of transportation) through on-line platforms.  

Crowdshipping can be implemented in different ways. Like in most of existing services, 

“crowdshippers” can pick up a parcel and deliver it to the final customers by using privately owned 

means of transportation (typically a car). Alternatively, crowdshippers can utilize existing public 

transit services. Due to several factors including the employed mode, the length of detours, and 

parking behavior, the societal effects of crowdshipping are still uncertain. 

From the perspective of logistics companies, this solution seems promising for improving 

efficiency and meeting the growing demand for faster and cheaper home deliveries. Costs can be 

reduced thanks to a better use of spare capacity, a potential reduction of delivery trips (Miller et 

al., 2017), and a more flexible and cheaper on-demand workforce (Punel et al., 2018). In the U.S., 

some recent successful examples of crowdshipping are the delivery platforms like Deliv, Hitch, 

and Amazon Flex (Dolan, 2018). However, it is uncertain whether this service could easily scale 

up to large shares of the freight distribution market (especially for bigger or more expensive items).  

From the perspective of public authorities, crowdshipping could be beneficial if properly 

integrated with existing movements and depending on the mode used by the crowdshippers. 

Ideally, freight trips would need to be replaced by public transit, walking, and bike trips (Marcucci 

et al., 2017). If crowdshippers rely on their own vehicles instead, the final number of delivery trips 

could be reduced only by means of an efficient consolidation and coordination of existing flows. 

Detours need to be minimized in order to reduce congestion and greenhouse emissions (Paloheimo 
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et al., 2016). However, as often occurs in popular platforms for on-demand transportation services, 

crowdshippers might provide the service by engaging in new dedicated trips rather than by 

modifying existing ones (Sampaio et al., 2018). This rebound effect might result in overall 

worsened conditions (Qi et al., 2016). 

Most of the research on crowdshipping has focused on identifying the determinants of the adoption 

and on modeling preferences for this service (See Section 2). With the exception of a few studies 

(Paloheimo et al., 206; Buldeo-Rai et al., 2018), no analyses of crowdshipping externalities have 

been performed. The main contribution of this chapter is to provide a systematic investigation of 

crowdshipping from a “supply perspective,” by analyzing its impacts on congestion and emissions, 

according to different operational features of the delivery process. In order to do that, we perform 

a dynamic traffic simulation-based analysis of alternative implementation frameworks. The 

chapter analyses externalities of crowdshipping services based on private transport or public 

transit, different levels of matched demand, together with crowdshippers’ trip detour and parking 

behavior. 

Dynamic traffic simulation is a valuable resource for providing an accurate indication of traffic 

and environmental impacts of freight policies. Here, the simulation framework adopted, is 

consistent with the dynamics of congestion and reproduces delivery operations as temporary fixed-

bottlenecks in case of double-parking. Its hybrid nature allows for large-scale analyses and, at the 

same time, detailed investigations of individual delivery tours and crowdshippers’ deliveries. 

Thanks to this approach, freight related emissions can be accurately estimated at link-level. 

The second contribution of this study is to investigate the effects of crowdshipping in a realistic 

large-scale scenario, by accounting for realistic traffic conditions, availability of commercial bays, 

and freight demand. For this purpose, simulations are performed for the implementation of 

crowdshipping in the city center of Rome. The city is very active in finding the most appropriate 

logistics solutions. This is evidenced by the upcoming Sustainable Urban Mobility Plan where 

innovative strategies, such as crowdshipping will be considered among the possible interventions. 
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The interest in this issue is also confirmed by recent research studies already performed in Rome 

(Marcucci et al., 2017; Serafini et al., 2018). 

In this chapter, after a brief presentation of previous research on crowdshipping, we provide a 

description of the methodological approach used for the evaluation and a description of the case 

study of Rome. In the second part of the chapter, we present the analysis of alternative scenarios, 

suggest some policy recommendations and draw conclusions. 

5.2 RELATED RESEARCH 

Understanding user response to crowdsourced delivery services and developing efficient 

implementation frameworks is fundamental to measuring external impacts, controlling unintended 

effects, improving business models and establishing a sustainable service. The body of literature 

on the topic of crowdshipping is quite limited due to its novelty and the lack of operational and 

behavioral data. 

From a behavioral perspective, it is important to investigate crowdshipping acceptability from both 

the supply and demand side. Marcucci et al. (2017) investigate attitudes and conditions that might 

favor participation in crowdshipping initiatives. They perform a survey in the city of Rome, 

administering a questionnaire to 200 students who can be considered as “early adopters/providers.” 

Results show that there is a large potential consensus in terms of both receiving goods via a 

crowdshipping service and acting as crowdshippers. Moreover, interviewees require a proof of 

crowdshipping sustainability to support it. In the same geographical context, Serafini et al. (2018), 

focusing on crowdshipping services deployed using the public transport network, perform a stated 

preference survey to identify the most important levers of acting as a crowdshipper. A sampling 

of metro users have been interviewed and results from discrete choice models reveal that 

crowdshipping can be a reliable solution to a substantial number of delivery requests. Stated 

preference data have been used also by Punel and Stathopoulos (2017) who explore “senders’ 

acceptability towards crowdshipping” compared to traditional shipping options. Findings from a 

US sample suggest the presence of heterogeneous preference patterns more in terms of driver 

performance attributes than for socio-demographics. Using the same data, Punel et al. (2018) focus 
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on the differences between crowdshipping users and non-users, providing managerial suggestions 

to logistics companies that help in tailoring the system. Miller et al. (2017) analyze the potential 

willingness to work as traveler–shipper based on a stated preference survey to a sample of US 

private car commuters. Results show that specific segments are more prone to crowdshipping and, 

overall, an increasing marginal rate of payment is needed for longer trips. 

From an optimization perspective, some studies have investigated the implementation of 

crowdshipping in order to improve efficiency of the delivery process. Archetti et al. (2016) 

consider the addition of occasional drivers (crowdshippers) as a variant of the classical capacitated 

vehicle routing problem. Wang et al. (2016) formulate the crowd-logistic optimization problem as 

an extension of a network min-cost flow problem. Kafle et al. (2017) propose a crowdsourced 

system based on bids and relay points. Arslan et al. (2018) investigate the matching of tasks, 

drivers, and dedicated vehicles in real time adopting a new variant of the “dynamic pickup and 

delivery problem” (Savelsbergh and Sol, 1995). 

From the perspective of city authorities, Paloheimo et al. (2016) analyze the environmental impacts 

of a trial crowdshipping library delivery service in Finland and identify an overall reduction of 

carbon footprint. The fact that a considerable part of crowdsourced delivery trips were done by 

bike played a significant role in reducing resource use and carbon emissions. Buldeo-Rai et al. 

(2018) perform a document analysis in combination with interview approach to investigate the 

externalities of an operational crowd logistics platform in Belgium. Since crowdshippers mainly 

rely on motorized modes and over half of the crowdshipping deliveries are made by means of 

dedicated trips, the service does not achieve an overall reduction of external costs. 

No study has systematically analyzed the potential impacts of alternative implementation 

frameworks on traffic and pollution (Table 15). Replacing delivery trips with crowdsourced public 

transit users would clearly have positive repercussions on environment and traffic. Substituting 

traditional deliveries with car trips instead depends very much on the possibility of exploiting 

existing vehicle movements and levels of detour (McKinnon, 2016). In addition, consolidating 

delivery tours and introducing crowdshipping deliveries at different times of the day could have 



91 

 

different impacts, depending on traffic conditions. In this study, by means of a simulation 

approach, we explicitly consider the influence of all these factors.  

 

 

Table 15: Qualitative comparison of potential impacts from different delivery frameworks 

Framework Carriers’ efficiency 
Environmental 

impacts 

Congestion 

impacts 

Regular delivery Depends on traffic High High 

Crowdsourced 

delivery by public 

transit user 

Depends on transit 

quality of service 
Low Low 

Crowdsourced 

delivery by car user 
Depends on traffic variable variable 

 

5.3 MODELING AND ANALYSIS APPROACH 

The impacts of alternative crowdshipping solutions are investigated by means of dynamic traffic 

simulation. This approach allows for a detailed representation of the evolution of freight 

movements (based on congestion) and their interactions with passenger traffic. For each link of 

the road network, and time interval, it is possible to estimate traffic condition indicators, such as 

travel times and queues. 

In this study, we extend the hybrid simulation framework proposed by Simoni and Claudel (2018) 

where traffic behavior is macroscopically reproduced at network level, while delivery movements 

are represented microscopically. Based on the features of this framework, one can reproduce and 

investigate the impacts of delivery operations on traffic (Section 3.1) and related environmental 

effects (Section 3.2). The hybrid framework is enhanced to reproduce different crowdshipping 

services by means of a dedicated simulation module (Section 3.3). 
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Figure 20: Overview of the simulation framework adopted to evaluate crowdshipping 

5.3.1 Traffic and parking  

The impacts of freight operations on urban traffic are measured by means of a simulation 

framework that derives dynamics of traffic flows based on general network characteristics (lanes, 

speed limits, signal settings) and traffic conditions (traffic demand). Passenger traffic flows are 

simulated by means of the macroscopic LWR model (Lighthill and Whitham, 1955; Richards, 

1956) where road traffic is assumed to follow the main properties of fluid streams. Such a model 

fairly reproduces traffic congestion phenomena like queue formation and spillback in urban 

networks, where traffic flow dynamics are mainly determined at (signalized) junctions 

(Papageorgiou, 1998). A Hamilton-Jacobi partial differential equation (PDE) formulation of the 

LWR model is solved by using a recent extension of the Lax-Hopf formula (Fast Lax-Hopf) 
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proposed by Simoni and Claudel (2018). This algorithm is suitable for simulation of large traffic 

networks given any initial and boundary conditions. 

Freight movements are reproduced as moving bottlenecks (Gazis and Herman, 1992; Newell, 

1993; Munoz and Daganzo, 2002) traveling across the network, which become “temporary fixed 

bottlenecks” when they perform deliveries. In order to account for the contribution of freight 

movements to the overall levels of traffic on the network, boundary conditions at the entry links 

of the network are increased to reflect the additional freight vehicles entered in the network. In 

addition, the original traffic simulation algorithm is updated such that turning proportions at the 

nodes are dynamically updated when in the presence of trucks. This approach is in line with the 

LWR model as it respects the mass conservation law. Based on that, one can explicitly account for 

the movements of delivery vehicles at each junction, and ultimately reproduce the effects on 

overall traffic levels of different trip lengths and delivery routes. Since, in this study, delivery 

vehicles are assumed to have maximum speed equal to ‘regular’ traffic, the main traffic obstruction 

occurs when the commercial vehicle stops at the curbside for delivery operations in case of an 

unavailable dedicated parking place. Each time the vehicle enters the link of delivery, a “parking 

routine” is performed to check whether there is any unused commercial bay. In case of unavailable 

parking, the vehicle stops and double-parks, rather than cruising to find an alternative location for 

the stop. The tendency to illegally park is a rather reasonable assumption as carriers mainly care 

about proximity to the destination (Amer and Chow, 2017) and typically transfer the overall costs 

of fines to customers (Hawkins, 2013; Stock, 2014). 

Information about parking availability and parking demand for each road of the network need to 

be provided as simulation input. An example of simulation of illegally parked delivery operation 

(and its effect on surrounding traffic) is illustrated in Figure 21. During the delivery operation, the 

vehicle obstructs road’s capacity and, when density (of regular traffic) is high enough, it triggers 

congestion that propagates upstream. Given this level of detail, a large amount of information on 

forthcoming deliveries (routes, location and duration of stops) is required in order to perform 

simulations. 
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Traffic impacts of crowdshippers relying on personal vehicles are modeled similarly to those of 

delivery vehicles, where the main congestion events are triggered by capacity reductions due to 

delivery operations. To the best of our knowledge, there are no studies on parking behavior of 

crowdshippers. It is reasonable to think that crowdshippers would be more inclined than regular 

drivers to perform deliveries while illegally parked, but also less willing to risk fines than 

professional commercial drivers who are not (usually) directly affected by parking tickets. Since 

performing a detailed investigation of crowdhippers’ parking behavior goes beyond the scope of 

this study, here we consider alternative parking attitudes (see Section 4). 

Figure 21: Space-time-density diagrams representing traffic flows in case of (above) regularly 

parked delivery (below) and double-parked delivery 
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5.3.2 Carriers’ last mile delivery and crowdshipping services 

In this study, we evaluate the adoption of crowdshipping for a same-day parcel delivery service 

performed by carriers in a central area (See Section 4). The last mile delivery process is modeled 

in three alternative ways: by means of a “traditional” (i.e., existing) delivery service, and by means 

of two alternative crowdshipping frameworks: a “car-oriented” service and a “public transit-

oriented” service, both of which can be integrated into the original one. 

In the traditional process, the delivery tours of each commercial vehicle are explicitly modeled by 

identifying the minimum cost routes given a list of daily customers and the carrier’s depot. The 

problem is formulated as a TSP where the total distance traveled is minimized by adopting 

Dantzig-Fulkerson-Johnson (DFJ)’s formulation (Dantzig et al., 1954). The obtained routes are 

then fed into the simulation model. 

In the car-oriented crowdshipping service, the driver picks up a parcel from a dedicated pickup 

station and performs the delivery with his own private vehicle. This type of facility would 

correspond to depots or stores located in the periphery of the city. In this study, the crowdshipper 

can perform this service by modifying an existing trip or by means of a stand-alone trip.  

In the public transit-oriented service, crowdshippers are existing public transit riders, who pick up 

parcels at dedicated facilities (e.g., lockers) located at the exit of metro stations or in the 

surroundings of major transit line stops.  

Although it is possible for crowdshipping companies to integrate different delivery modes, for the 

scope of this study we simulate the two separately. Congestion and environmental impacts of the 

two services are clearly different. While crowdsourced deliveries made by public-transit users have 

no direct congestion or environmental externalities, crowdsourced deliveries performed by car 

users affect traffic and emissions to a different extent, according to factors like the detour from the 

origin and destination of existing trips, generation of dedicated delivery trips, and parking 

behavior.  
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In this study, we assume traditional deliveries could be replaced by a crowdsourced delivery if in 

the service range for drivers or public transit users. The maximum range for crowdshippers is an 

exogenous variable that is likely to be determined by the “matching procedure” between demand 

and supply for crowdsourced deliveries.  In this study, crowdshippers and deliveries are considered 

“matched” a priori. A centralized system would dynamically assign delivery orders to 

crowdshippers, based on their availability and compensation, and depending on customers’ 

willingness to pay.4 The reader is referred to Wang et al. (2016), Archetti et al. (2016), and Arslan 

et al. (2018) for novel formulations of the crowdsourced delivery optimization problem. The time 

required for transshipment operations at pickup stations and depots are not explicitly considered 

in the model, as we focus on the last mile of the delivery process. In both traditional delivery and 

crowdshipping services, no delivery failure is considered. 

In order to reproduce the crowdsourced delivery process, we embed into the original simulation 

framework a new algorithm that derives crowdshippers delivery trips (based on randomized 

existing ones) and integrates them in original delivery framework (by replacing and consolidating 

existing trucks’ tours) based on different input parameters (Algorithm 1). First, customers 

switching to crowdshipping services are chosen from the original set following a binomial 

distribution based on the matched levels of demand (input). In case of a transit-oriented service, 

crowdshipping customers are assigned to the closest transit station. In case of a car-oriented 

service, customers of the crowdshipping service are assigned to a driver who deviates from his or 

her original trip in accordance with a maximum detour constraint, and whose new route is fed into 

the simulation. Original delivery routes are updated in order to account for the different 

configuration, and in case of significant reduction of customers served (more than 50%), they are 

also merged together (consolidation) (Figure 22). 

Algorithm 6: Pseudo-algorithm for integration of crowdshipping into the simulation framework 

Input: matched crowdshipping demand (y), initial routes of carriers (ρv), delivery sets (𝑫𝒗), PT stations (Φ), 

range (r), maximum detour (δ)  

                                                 

4 This is, indeed, the typical task of crowdshipping platforms. See, for example, Take My Things in Italy 

(www.takemythings.com) and Hitch in the US (http://www.hitchit.co/#home). 

http://www.takemythings.com/
http://www.hitchit.co/#home
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Ouput: new carriers’ delivery tours (𝝆𝒗′), crowdshippers’ trips (cs(o,d)) 

% generation of a set S of crowdshipping customers based on crowdshipping demand level y 

𝑺 = 𝑪(𝒏 ∙ 𝒚, 𝟏) 

%if crowdshipping is public transit(PT) oriented, assign customer s to the closest PT station (if any) 

FOR each s in S: 

   FIND 𝝋 in Φ such that min(dist{𝝋, 𝒔}): 

     IF min(distance{𝝋, 𝒔})≤ r: 

       s𝒔𝝋 

%if crowdshipping is car oriented, assign detour length τ 

FOR each s in S: 

τ =𝜸(𝟎, 𝜹) 

%Generate crowdshippers’ original trips 

FOR each s in S: 

    ADD cs(o,d) such that dist{o,s}+dist{s,d}-dist{o,d} = τ 

%update original routes into 𝑫′𝒗 

FOR d in 𝑫𝒗: 

   IF d ∉S: 

      ADD d to 𝑫′𝒗 

%if number of customers in two routes is lowered by 50% or more, merge them  

IF |𝑫′𝒗|< 𝟎. 𝟓 ∙ |𝑫𝒗|: 

   ADD 𝑫′𝒗 to set V’: 

        IF |𝑽′|==2:         

%recompute optimal route 𝝆𝒗′ for new delivery lists 

TSP(𝑫𝒗) 𝝆𝒗′ 

TSP(𝑽′)𝝆𝒗′ 
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Figure 22:Replacement of truck deliveries by crowdshippers and merging of routes process 

5.3.3 Emissions 

The modeling of air pollution emissions due to freight-related movements includes widely used 

pollutants for measuring air quality standards: CO, NOx and PM10. These pollutants are derived as 

a function of the travel speed and distance traveled by each commercial vehicle. Thanks to the 

adopted hybrid simulation approach, it is possible to identify for each delivery vehicle the 

emissions produced along its route (Figure 23). 

The impacts of travel speed and vehicle technology are derived from an analytical relation 

proposed by the UK Transport Research Laboratory (Boulter et al., 2009) to obtain the amount of 

pollutant produced at link level based on the average speed and vehicle’s typology. Hence, the 

cumulative production of pollutant per vehicle 𝑃𝑑 (in grams), produced on its delivery route R can 

be calculated as the following 4th order polynomial function: 

𝑃𝑑 =∑[
(𝑎 + 𝑏 ∙ 𝑣𝑟 + 𝑐 ∙ 𝑣𝑟

2 + 𝑑 ∙ 𝑣𝑟
3 + 𝑒 ∙ 𝑣𝑟

4 + 𝑓 ∙ 𝑣𝑟
5 + 𝑔 ∙ 𝑣𝑟

6)

𝑣𝑟
] ∙ 𝑑𝑟

𝑟∈𝑅

   (5.1) 
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where 𝑣𝑟 corresponds to the average speed of the vehicle on link 𝑟 (km/h) of length 𝑑𝑟 (km), and 

the coefficients {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔} corresponds to empirically derived parameters according to 

pollutant and vehicle typology. The effects of greenhouse gas emissions (CO2) are derived based 

on emissions of the other pollutants that are oxidized in CO2 by considering them as a constant 

(Boulter et al., 2008). The resulting speed-emission curves are similar to that of Barth and 

Boriboonsomsin (2008), which is characterized by a parabolic shape where higher emission rates 

are determined by low speeds (because of stop-and-go conditions) and higher speeds (because of 

the higher engine load requirements). 
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Figure 23: Average speed during a vehicle’s delivery tour (above) and corresponding cumulative 

CO emissions (below). 

5.4 CASE STUDY 

The impacts of two alternative crowdshipping services are investigated in comparison to a “Base 

Scenario” that corresponds to a realistic simulation of traditional parcel distribution in Rome’s 
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freight restricted traffic area (Figure 24a). Despite the access restrictions, the studied area, which 

accounts for about 73,000 inhabitants, is characterized by serious congestion issues due to an 

undersized public transport network and a strong car dependency (Marcucci and Gatta, 2017). 

TomTom (2016) data rate Rome as the 27th most congested city worldwide, with a congestion 

score or (average) extra travel time of 40%. In this study, we consider only the most central portion 

of the restricted area (about 5 square kilometers). The simulation’s adopted network includes 411 

aggregated links with detailed information regarding signalized intersections, number of lanes, and 

speed limits (Figure 24b). The public transit network considered includes the two major subway 

lines (Line A and Line B) and 1 tram line (Line 8) with respectively 7 and 3 stops inside the studied 

area (Figure 24a). 

As discussed in more detail in Section 5, in order to account for the influence of traffic and parking 

conditions on freight externalities we perform network simulations of 60 minutes corresponding 

to two different times of the day: 10-11 AM, and 2-3 PM. While parking availability in the area is 

constant throughout weekdays’ working hours, during the morning interval the average network 

speed is about 10% lower than in the afternoon interval.  

The simulations are calibrated with real data obtained from the Mobility Agency of Rome, by 

means of a heuristic optimization process based on a genetic algorithm where the fitness function 

corresponds to weighted combination of average speed and volume errors (Cheu et al., 1998). The 

adopted stopping criteria corresponds to a GEH Statistic lower than 5 for 85% of the links, as 

suggested by the UK Highways Agency's Design Manual for Roads and Bridges (Highways 

Agency, 1996) modeling guidelines. The resulting simulations are validated by comparing the 

average travel times between 20 randomly chosen origin-destination couples in the network with 

estimates from Google Traffic (Google Traffic, 2018). Information about parking infrastructure 

and parking conditions is obtained from the Municipal Police in Rome, according to which illegal 

occupancy of loading/unloading bays is around 90%.  

In this study, we consider the possibility of adopting crowdshipping services only for packages 

ordered online. The volume of online ordered parcels distributed in the studied area, based on an 
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on-line daily purchase rate of 2.62% per inhabitant (Serafini et al., 2018), is estimated at 3,500 

parcel deliveries per day. 

In order to gather additional information about parcel distribution and delivery operations in the 

area, a set of interviews with major carriers was carried out in connection with the activities 

performed for the Sustainable Urban Mobility Plan in Rome. Different questions ranging from 

strategic aspects of delivery tours (stops, length, and times) to operational details (availability of 

commercial bays) were asked of 12 leading delivery companies operating in the studied area. 

Based on the collected information, carriers’ deliveries and vehicles’ delivery tours were modeled 

as follows: each daily tour accounts for 50 stops corresponding to about 60 deliveries for a total 

distanced traveled of 60 km (from the main depot); each delivery requires a stop of 3 minutes. 

These values are in line with Allen et al. (2017), who estimated 72 customers per round and 4 

minutes per delivery. 

To calculate emissions, we consider delivery light vans for traditional delivery services (category 

Euro IV) and petrol car Euro IV for crowdshippers. This category represents the largest share of 

circulating vehicles in Rome (Comune di Roma, 2016).  

An investigation of the conditions for public transit passengers to act as crowdshippers and for 

people to receive goods with crowdshipping (Serafini et al., 2018) is used as a main reference for 

the implementation of crowdshipping in Rome. Here, crowdshipping demand/supply is estimated 

and compared, revealing the potential feasibility of this distribution system for different scenarios. 

In this study, parcels delivered by means of crowdsourced delivery can be collected at dedicated 

pickup points located at the exit of subway lines in case transit-oriented service, or in the periphery 

of the city for car-oriented service. In this study we do not consider induced crowdshipping trips. 

This is a reasonable assumption considering that in order to access the area studied drivers would 

need to purchase a special pass. 
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Figure 24: Rome’s traffic restricted area with subway lines (a) and simulation’s network (b) 

5.5 ANALYSIS 

In this section, we study the impacts of different crowdshipping implementation features on the 

overall levels of pollution and congestion. Environmental impacts are distinguished in changes of 

air pollutants (CO, PM10, and NOx) and greenhouse gases (CO2). Congestion effects are reported 

by the change of delay (measured at network level) attributable to crowdshipping operations in 

comparison to the delay due to traditional delivery operations (marginal delay). Given the random 

configuration of deliveries and the stochastic nature of the parking model, we perform 100 

simulation runs per tested scenario.  

First, we evaluate the potential influence of the chosen mode for crowdshipping services. Then, 

we explore more in detail the effects of operational aspects, such as the length of detour made by 

and the parking behavior of crowdsourced drivers. Finally, we provide insights into the impacts of 

crowdshipping at alternative times of the day, characterized by different traffic conditions.  
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5.5.1 Influence of mode and matched demand 

In order to understand the effects of adopting alternative crowdshipping modes, we perform 

experiments for three different levels of matched demand (10%, 30%, and 50%) by using car and 

public transit (Figure 25). As expected, for higher levels of matched demand, crowshipping by 

public transit is beneficial from both an environmental and congestion perspective, showing an 

increasing trend. It is important to note that, while benefits are almost negligible for low levels of 

matched demand (particularly in terms of congestion), the gains significantly increase for 30% and 

50% of traditional deliveries replaced. This result can be explained by the possibility of achieving 

higher consolidation of original truck trips. In case of car usage, crowdshipping does not generally 

determine improvements in terms of pollution and congestion. This result is in line with Buldeo-

Rai et al. (2018) who found crowshipping to be unsustainable, especially due to the rebound effect 

of induced delivery trips. Here, even by considering only existing trips, deliveries made by non-

professional drivers determine a worsening of emissions between approximately 3% and 5% and 

an increase of marginal congestion impact between approximately 6% and 11%. Increasing the 

number of trips and their length in an already congested area is clearly detrimental. Interestingly, 

while congestion impacts show an overall increase for higher levels of matched demand, the 

emissions effects are stable. This effect is due to the increasing savings coming from improved 

consolidation of truck tours and from replacement of trucks with cars (that are, according to the 

assumptions, less polluting) in the trip from crowdshipping stations to the city center.  
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Figure 25: Impacts of employed mode for crowdshipping at different levels of matched demand 

5.5.2 Influence of detour length and parking behavior 

In order to test the influence of different levels of detour on the overall impacts of crowdsourced 

deliveries made by car, three alternative maximum ranges of deviation from the original trips (5, 

10, and 15 minutes) are tested for the same level of matched demand (30%). The results shown in 

Figure 26, indicate that, while performing crowdshipping by car could be partially beneficial for 

deviations below five minutes, it becomes unsustainable for longer detours. Interestingly, for 

minor detours, the overall marginal delay still increases because of the overall growth of vehicle 

miles traveled.  



106 

 

 

Figure 26: Impacts of different levels of detour 

As discussed earlier, there is little knowledge of carriers’ parking behavior and even less 

concerning that of crowdshippers. Here, we investigate the congestion effects of three alternative 

behavioral trends (which could themselves be the result of several factors, such as infrastructure 

supply, reward for crowdshipping services, and levels of enforcement): a “conservative” attitude 

wherein crowdsourced drivers always park legally; an “illegal” attitude wherein crowdsourced 

drivers always double-park; and a “mixed” attitude wherein legal and illegal parking are equally 

split. Just as in the previous experiment, we assume constant matched demand equal to 30% of 

deliveries. The results highlight how parking plays an important role in the final traffic 

performance of crowdshipping services (Figure 27). While a “mixed” parking attitude would only 

increase marginal delay by approximately 2% in comparison to a completely “legal” attitude, 

consistent illegal parking performed by crowdshippers would yield a significant increase of 

marginal delay (15% in total). The outcome of this experiment shows how the creation of 

temporary fixed bottlenecks during illegally parked deliveries is a crucial issue for congestion. 
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Figure 27: Traffic impacts of different parking behavior 

5.5.3 Influence of daily traffic fluctuations 

In order to investigate the impacts of performing crowdshipping deliveries under different traffic 

conditions, we conduct the same experiments of Section 5.1 by simulating network traffic between 

2 and 3 PM. During this time of the day, traffic congestion is milder than in the previous scenario 

(traffic delay is approximately 15% lower). As it is possible to see in Figure 28, performing 

deliveries through crowdshipping at another time of the day, characterized by lower levels of 

traffic, implies different impacts. In case of crowdsourced deliveries by car, the impacts are still 

negative; however, increasing the level of matched demand does not increase congestion as in the 

morning scenario. Interestingly, for higher levels of matched demand (50%), the environmental 

impacts of crowdshipping by car are close to zero. Given the relatively low levels of traffic and 

the higher traveling speeds, having more vehicles performing deliveries (and often double parking) 

does not have significant effects, especially when counterbalanced by increased consolidation and 

reduced truck trips between the depot and the city center. Crowdsourcing deliveries by using public 

transit between 2 and 3 PM, shows a similar trend to the experiments performed at 10 AM. 
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However, given the overall lower levels of congestion, it entails lower benefits in terms of reduced 

(i.e., marginal) delay. On the other hand, significant air pollutants and greenhouse emissions 

savings can still be achieved. 

 

Figure 28: Impacts of crowdshipping for less congested times of the day 

 

5.5.4 Influence of shorter delivery operations 

Another aspect of crowdshippers’ parking behavior worth of consideration, is the time required to 

perform deliveries. Smaller vehicles (, such as crowdshippers’ cars) in charge of a single delivery 

might require less time than the larger trucks because of shorter unloading operations. This would 

translate to shorter delivery durations and lower hindrance to surrounding traffic flows in case of 

double-parking. On the other hand, as already observed earlier, trucks would have longer stops, 

but also lower frequency.  



109 

 

In order to investigate the influence of shorter operations of crowdshippers, we test three 

alternative (crowdshippers’) delivery durations (60, 90, and 120 seconds) for the same level of 

matched demand (30%). The results shown in Figure 29, indicate that, the length of crowdshipper’s 

delivery has a considerable impact on surrounding traffic. For lower delivery durations, 

crowdshipping’s negative impacts can be considerably reduced to the point that very short 

crowdshippers’ operations (1 minute or below) would become overall beneficial to traffic. This 

outcome shows that increasing the efficiency of crowdshippers’ delivery operations could 

significantly improve the traffic congestion footprint of crowdsourced delivery services. In order 

to achieve this goal, different strategies to facilitate parcel “drop-off” operations could be made,, 

such as sending live notifications to the receiver when the crowdshipper is approaching destination 

or designing dedicated drop-off facilities in the apartment complexes lobbies.  
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Figure 29: Impacts of shorter crowdshippers’ delivery operations  

5.5.4 Policy Implications 

Thanks to the experiments performed, it is possible to determine a clearer picture of the potential 

opportunities and threats coming with the implementation of crowdshipping services.  

It is interesting to see that even for a “mild” implementation of crowdshipping targeted to a very 

specific market segment (on-line parcel deliveries) and for relatively low levels of demand, the 

environmental and congestion effects are already appreciable.  

The transportation mode chosen by crowdshippers is fundamental for the overall sustainability of 

crowdsourced deliveries. While crowdshipping can be beneficial (for the city) when relying on 

public transit, its impacts are always negative in case of car-based crowdsourced trips. If 

crowdshipping is implemented by private carriers (or companies) independently, thus leaving de 

facto such transportation choice to crowdshippers, a midway scenario is most likely to occur. 
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However, without any supporting policy in terms of incentives or regulations, it would be difficult 

to steer crowdshipping practices in the public-transit oriented direction. 

More operational aspects,, such as the range of detour and parking behavior of crowdsourced 

drivers, are also affecting the overall sustainability of this service. Limiting the deviation of 

crowdshippers’ delivery trips from their original trips and providing adequate parking for 

crowdsourced deliveries would be important actions to reduce negative externalities. In this 

context, logistic providers could play a critical role in adjusting the platform operations to obtain 

a more sustainable use, and public authorities would have the responsibility to identify adequate 

parking responses to this phenomenon. 

Finally, investigating the impacts of crowdsourced delivery at different times of the day has shown 

how the negative effects of crowdshipping by car are lower during less congested hours.  This 

information could be exploited by policy makers to encourage the use of crowdshipping by public 

transit particularly during peak hours. 

5.6 CONCLUSION 

This study investigates, by means of a simulation approach, the potential impacts on traffic and 

pollution deriving from the implementation of alternative crowdshipping practices. The 

externalities associated with several strategic (chosen mode) and operational (detour length, 

parking behavior, and traffic conditions) aspects of this service are analyzed by means of 

simulation in realistic settings. 

Traffic simulation is adopted in order to model more accurately the effects on traffic and pollution 

of delivery operations dynamic. This modeling approach is relatively limited in the field of City 

Logistics and, to the best of the authors’ knowledge, no systematic simulation-based study of 

crowdshipping has yet been performed. The adoption of a hybrid traffic simulation seems 

particularly appropriate for the evaluation of traditional and crowdshipping delivery services, as it 

reproduces traffic at a macroscopic level, while reproducing delivery operations and 

crowdshippers’ trips at a microscopic level. This approach offers a good compromise between 

computational performance and the accuracy of the traffic model. Future research could address 
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carriers’ and crowdshippers’ parking modeling in order to reproduce more accurately their 

behavior with the support of revealed and stated preference surveys.  

The externalities related to crowdshipping are investigated at the network level by analyzing the 

effects of the implementation of such service in comparison to traditional delivery framework for 

parcels, in the city center of Rome. The city is characterized by considerable congestion and 

parking issues and it would greatly benefit from innovative freight distribution solutions. Thanks 

to available traffic data and information about the parcel delivery process directly obtained from 

major carriers operating in the area, it was possible to perform realistic simulations corresponding 

to alternative implementation scenarios. The realism of the experiments could be further increased 

in future studies, by including more specific information about signal settings and parking, and by 

adopting a more detailed street network. 

The analyses confirm that crowdshipping is a double-edged sword for sustainable freight 

distribution since, depending on different implementation features, it could result in very different 

changes in emissions and traffic congestion. The chosen transportation mode by crowdshippers 

plays the main role in identifying the effects of this solution. Car-based crowdsourced deliveries 

entail higher negative externalities from both a traffic and an environmental perspective than 

traditional deliveries. For this kind of crowdshipping, operational aspects,, such as the availability 

of parking, the optimization of existing trips, and the implementation during off-peak hours can 

considerably influence the final traffic and emissions impacts.  

More research is needed to understand whether the crowdshipping services offered in current 

market are leaning more towards car-based or public transit-based (or other environmentally 

friendly) deliveries. Based on that need, ad hoc policy solutions aimed at optimizing existing 

crowdshippers’ trips could be developed and evaluated by a similar simulation-based approach. A 

possible solution could consist of link and lane tolls in those locations characterized by heavier 

traffic of crowdshippers. Advanced technologies,, such as “smart vehicles”, capable of dissipating 

shockwaves by means of intelligent control, could be employed to minimize the negative effects 

of double-parked maneuvers.  
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6. CONCLUSION 

6.1 SUMMARY OF CONTRIBUTIONS 

Freight transportation plays a fundamental role in the sustainable development of urban regions.  

In order to cope with the growth of road freight traffic and other recent mobility trends that are 

increasing the burden on road infrastructure systems (e.g., e-commerce, urbanization), innovative, 

sustainable, and efficient solutions are needed. This dissertation focuses on the development of 

appropriate modeling tools to reproduce traffic movements and operations of commercial vehicles 

at different levels. Such tools can be employed for the development of advanced mobility solutions 

and for the evaluation of complex freight-related traffic situations. The main rationale behind this 

research is that, since dynamic traffic simulation can properly capture the traffic effects of trucks, 

especially in urban settings, research efforts need to be taken in this direction for modeling and 

integrating freight traffic into City Logistics. In the context of this research work, it is possible to 

identify some theoretical contributions in the field of traffic modeling and traffic flow theory 

(Chapter 3 and 4), and other more practical contributions in the field of transport policy and urban 

freight distribution (Chapter 5).  

6.1.1. Theoretical contributions 

In the first part of the dissertation a semi-analytic numerical scheme is developed to reproduce 

accurately and efficiently interactions between passenger and commercial traffic, which is 

modeled as moving bottlenecks. Based on the LWR model and on the Hamilton-Jacobi 

formulation of the problem, the algorithm allows the derivation of trucks’ trajectories without 

having to compute the solution on the entire computational domain. Thanks to this approach it is 

possible to reproduce several moving bottlenecks traveling on a stretch of road in a broad range of 

traffic conditions.  

As an extension of this work, a simulation framework is developed for modeling the effects of 

urban freight operations on urban networks.  A particular focus is given to the phenomenon of 

double-parked delivery operations that are modeled as temporary fixed bottlenecks. The main 
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characteristics of the proposed modeling approach resides in its hybrid nature. While regular traffic 

is modeled macroscopically, delivery vehicles are reproduced microscopically, such that they can 

be tracked along their routes during the entire simulation. Thanks to the solution method adopted, 

it is possible to run accurate large-network simulations with relatively low computation times (in 

the order of seconds) and perform network analyses requiring a large amount of tests. 

A further improvement of the modeling framework is proposed in the final part of the dissertation, 

when crowdsourced delivery services are investigated. In this case, in order to specifically account 

for traffic increases on links traveled by trucks or crowdsourced carriers, the original traffic 

simulation algorithm is updated such that turning proportions at the nodes are dynamically 

updated. Based on that, one can explicitly account for the movements of delivery vehicles at each 

junction, and ultimately reproduce the effects on overall traffic levels of different trip lengths and 

delivery routes. 

Finally, as a side contribution of this dissertation, not strictly related to the issue of freight traffic 

modeling, a more efficient version of the Lax-Hopf algorithm is formally derived (Fast Lax-Hopf). 

Based on mathematical proofs, it is demonstrated that, for calculations of the link’s demand and 

supply, not all the initial conditions are influential, and that, after a certain time, they can be all 

completely neglected. The results of several experiments confirm that the FLH algorithm is 

considerably faster than the original version and it does not compromise the accuracy in 

reproducing congestion phenomena. 

6.1.2 Practical contributions 

In this dissertation, the modeling approach is employed for the analysis of different freight 

transportation problems. Some results allow preliminary considerations about the effects of last-

mile delivery solution that can been confirmed in other studies. Other findings, instead, are in line 

with studies from previous literature that adopted different approaches.  

Different solutions have been analyzed by means of the ad hoc simulation framework in order to 

reduce the impacts of freight movements, especially of double-parked delivery operations. The 

practice of off-peak deliveries, consisting in shifting part of the trips and operations to less 
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congested hours of the day (typically evening and night) has proved to be an effective solution to 

freight-related congestion in urban settings. Several simulation experiments performed in a 

realistic urban network have shown that this solution would be very effective as well, in increasing 

the reliability of the system and improving carriers’ delivery performance. These results are in line 

with the previous studies that employed different types of models or used experimental data.  

Restricting from deliveries specific links or sets of links, instead, could be beneficial only in some 

situations. It is not very clear to what extent this measure can be effective in reducing congestion 

because of the complexity of urban freight operations and the influence of several factors like 

network topology, traffic demand and interactions among delivery operations.  

A full chapter of this dissertation has been dedicated to the evaluation of crowdsourced delivery 

services and their externalities, by means of simulation. To the best of our knowledge, this is the 

first work that systematically analyzes the impact of different crowdshipping features at network 

level. From the experiments it emerges how crowdshipping’s alternative implementations could 

determine very different changes in emissions and traffic congestion. While crowdshippers’ 

transportation mode choice plays the main role in identifying the effects of this solution, other 

operational aspects (, such as availability of parking, optimization of existing trips, and 

implementation during off-peak hours) can also considerably influence the final traffic and 

emissions impacts. 

Finally, in the presentation of the fast algorithm for moving bottlenecks, its application in two 

specific freight traffic optimization problems is discussed. The first one consists of control of 

inflow truck traffic into a main arterial combined with a traffic signal control, while the second 

one consists of real-time curbside management for truck deliveries in urban environments. In both 

cases, a relatively straightforward evolutionary metaheuristic is coupled to the simulation in order 

to maximize the overall traffic throughput. The results of the experiments indicate that, thanks to 

the computational efficiency of the algorithm, it is possible to achieve fairly satisfactory solutions 

in a few seconds. Thanks to the oncoming technologic improvements in wireless communication, 

as well as computational and sensing technologies (Intelligent Transport Systems), the real world 

implementation of these strategies is a feasible possibility.  
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6.2 LIMITATIONS AND DIRECTIONS FOR FUTURE WORK 

The simulations and analyses performed in this study present some limitations. Some of them are 

more related to the nature of the models employed, whereas others derive from the lack of real 

data.  

Throughout the entire dissertation, freight flows and operations are modeled according to an hybrid 

approach, where main traffic flows are reproduced macroscopically (LWR model), while single 

trucks’ movements are represented microscopically in forms of moving (or temporarily fixed) 

bottlenecks. While this approach well captures the effects on capacity reduction of slower vehicles, 

it does not explicitly account for more complex traffic phenomena (e.g., overtaking, weaving, etc.). 

The main reason behind the choice of this approach lies in its computational efficiency that makes 

it very suitable for large-scale studies (involving hundreds or thousands of links). This feature is 

also very important for simulation-based optimization and statistical problems requiring a large 

number of simulations. Finally, as Papageorgiou (1998) notices, the LWR model works fine in 

urban signalized networks where most of dynamics are dominated by external events (traffic 

lights) rather than by inherent traffic flow dynamics. Future work could involve the development 

of similar methods for more advanced models (e.g., second-order models).  

In the proposed traffic simulation framework, it is possible to couple the traffic model with any 

generic (discrete) parking model in order to reproduce delivery vehicles’ parking behavior in 

consistency with the infrastructure supply and demand. In our study, delivery vehicles are assumed 

to be rather “inelastic” and more inclined to double-park illegally (when no commercial bay or 

regular parking is available) rather than cruising to find an alternative location for the stop. 

Developing more accurate behavioral models or adapting (one of the few) existing ones was 

beyond the scope of this research and would have required surveys and data from carriers for 

estimation and validation. In future research, the accuracy of parking behavior could be improved 

by accounting for traffic patterns, time of day and type of delivery. 

From a practical perspective, the majority of the experiments were performed with little of the 

actual volumes of freight traffic and deliveries made in the studied areas (or none, in the case of 

Austin). Access to this type of privately owned information is a common problem in this field of 
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study, mainly resulting from a lack of freight stakeholder involvement in urban transport planning 

and policy making (Ballantyne et al., 2013; Lindholm and Browne, 2013) or from companies’ 

reluctance to share business information. For this reason, a series of assumptions on features of 

delivery tours (e.g., average stop duration, number of stops and deliveries, total number of trips) 

had to be made in our simulations (particularly in the Austin scenario). Overcoming this limitation 

in this type of study (focused on the externalities of freight movements) would require a significant 

investment of resources to collect data from carriers and by means of fieldwork. Thanks to the 

possibility of running several simulations, thorough sensitivity analyses could be performed by 

changing different features of freight deliveries and by randomizing delivery locations. 

Besides the research work proposed to address the above-mentioned limitations of this dissertation, 

some other directions for future research have been identified as well. Within the realm of freight 

traffic simulation-based optimization, evolutionary metaheuristics,, such as genetic and memetic 

algorithms have been adopted.  It would be interesting to test alternative simulation-based, 

derivative-free approaches and compare their efficiency with the ones in this dissertation. Possible 

solutions include adaptive-search and response-surface methods. Methods from machine learning 

could also be employed to develop heuristics capable of realistic modeling of traffic flows, while 

retaining good computational efficiency in order to deal with large networks. 

Finally, given the deterministic nature of the adopted simulation framework, all the optimization 

experiments were performed in deterministic fashion with the support of sensitivity analyses. It is 

known that, in reality, several sources of uncertainty (i.e. traffic predictions, measurements) could 

affect the final quality of the solutions. Future work could focus on exploring the influence of 

uncertainty on the optimization, and including it by means of robust optimization approaches. 

As to the evaluation of innovative City Logistics solutions, like crowdshipping, it would be 

interesting to study how the results obtained in this study apply to other cities. In addition to 

demand for parcel delivery and features of the implemented service, several other factors related 

to the urban morphology of the road network, availability of parking and commercial bays, and 

overall traffic conditions might ultimately influence the impacts of this solution.  
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APPENDIX: FAST LAX-HOPF ALGORITHM  

The primary objective of the proposed algorithm is to quickly compute the outflows and inflows 

at every time step, by using a minimum number of operations, and maintaining exactness. Once 

the boundary conditions are known on all links, the solutions inside the computational domain 

can be found by minimizing a number of explicitly computed functions. The Fast Lax-Hopf 

(FLH) algorithm speeds both the computation of the boundary conditions, and the computation 

of the solution inside the computational domain. 

This algorithm relies on the specific structure of the partial solutions to the Hamilton-Jacobi PDE 

with triangular fundamental diagrams. From (Claudel and Bayen, 2010a, b), the partial solutions 

associated with affine blocks are convex (this property is valid for any concave fundamental 

diagrams) functions of (𝑡, 𝑥). Furthermore, (Daganzo 2005) showed that these solutions are 

Lipschitz continuous on their domain of definition for general diagrams. In the case of a 

Triangular diagram, it is easy to verify from the expression of the solutions that these solutions 

are indeed Lipschitz continuous. 

Furthermore, the partial solutions associated with linear initial or boundary conditions, for a 

triangular fundamental diagram, are piecewise linear functions of space and time. This property 

is very important in the present situation, and would not be true for example in the case of a 

Greenshields fundamental diagram.  

In the present case, we consider a general mixed initial-boundary condition problem on a given 

stretch of highway limited by upstream and downstream boundaries. We also assume that the 

boundary conditions that apply on the domain are not known in advance, unlike in the LH case. 

These boundary conditions have to be computed at each time step through junction models 

relating the demands of the incoming links to the supplies of the outgoing links, across each 

junction. These junction models have the effect of coupling the solutions computed over adjacent 

links. To compute these boundary conditions, our objective is to compute the inputs to the 

junction models as fast as possible. These inputs are upstream demands and downstream supplies 

of each link (for a given time step). 
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let the initial condition be expressed as a piecewise linear function, with each linear piece on 

intervals (xi,xi+1) defined by: 

 

𝑐𝑖𝑛𝑖
𝑖 (𝑥) = {

−𝑘𝑖𝑥 + 𝑏𝑖                         ∶ 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1
+∞                                 ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

 

where 𝑖 ∈ { 0, … , 𝑛𝑖𝑛𝑖 − 1}, with similar definitions for the upstream and boundary conditions 

(Eq. 7). As described in (Daganzo, 2006), the initial condition must satisfy some growth and 

continuity conditions: 

 

 0 ≤ 𝑘𝑖 ≤ 𝑘𝑗 for all 𝑖 ∈ {0,… , 𝑛 − 1}                                                                          (2) 

 

 −𝑘𝑖𝑥𝑖 + 𝑏𝑖 = −𝑘𝑖+1𝑥𝑖 + 𝑏𝑖+1, ∀𝑖 ∈ {1,… , 𝑛 − 1}                                                   (3)                                          

 

Similar growth and continuity constraints apply for the upstream and boundary conditions, in 

particular the boundary flows are nonnegative and upper bounded by the link capacity. 

By the inf-morphism property (Mazare et al, 2011), the solution 𝑁(𝑥, 𝑡) associated with the 

Hamilton-Jacobi PDE (3) can be computed at any point (𝑥, 𝑡) of the space-time domain using the 

following formula: 

 

𝑁(𝑥, 𝑡) = min (𝑚𝑖𝑛
𝑖,𝑗,𝑘

𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡), 𝑁𝑐𝑢𝑝𝑗(𝑥, 𝑡), 𝑁𝑐𝑑𝑜𝑤𝑛

𝑘 (𝑥, 𝑡))                                        (4)                                                                                  

 

To compute the downstream boundary block for a given time interval [𝑡, 𝑡 + Δ𝑡], we first need to derive 

the demand of this particular link over the time interval [𝑡, 𝑡 + Δ𝑡], defined by 𝑑(𝑡, 𝑡 + Δ𝑡) =

𝑁(𝑥𝑛𝑖𝑛𝑖 ,𝑡+Δ𝑡)−𝑁(𝑥𝑛𝑖𝑛𝑖 ,𝑡)

Δ𝑡
. The actual flow over the time interval [𝑡, 𝑡 + Δ 𝑡] is then determined using the 

other demand and of all links connected to this junction, through the chosen junction model.   

Hence, assuming that 𝑁(𝑥𝑛𝑖𝑛𝑖 , 𝑡) is known, and using the classical LH algorithm (Mazare et al., 

2011), we can compute 𝑁(𝑥𝑛𝑖𝑛𝑖 , 𝑡 + ∆𝑡) as: 
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𝑁(𝑥𝑛𝑖𝑛𝑖 , 𝑡 + ∆𝑡)

= min [𝑚𝑖𝑛𝑖≤𝑗≤𝑛𝑖𝑛𝑖𝑁𝑐𝑖𝑛𝑖
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

+ ∆𝑡), min
0≤𝑘≤𝜅 

𝑁𝑐𝑢𝑝𝑘(𝑥𝑛𝑖𝑛𝑖 , 𝑡 + Δ𝑡) , 𝑁𝑐𝑑𝑜𝑤𝑛
𝑙 (𝑥𝑛𝑖𝑛𝑖 , 𝑡 + Δ𝑡 )] 

(5) 

 

In (5), 𝜅 is defined as 𝜅 = max
𝑖∈ℤ 𝑠.𝑡.  𝑥0+𝑣𝑓⋅(𝑡+Δ𝑡−𝑡𝑖+1)≥ 𝑥𝑛𝑖𝑛𝑖

𝑖, and 𝑙 = max
𝑖∈ℤ 𝑠.𝑡.  𝑡𝑖+1≤𝑡+Δ𝑡 

𝑖. 

For simplicity, we now assume that all boundary condition blocks are defined at regular time 

intervals (though the algorithm can be extended in a straightforward way for general time 

intervals), and thus, that 𝑡𝑗 = 𝑗 ⋅ Δ𝑡, where Δ𝑡 is the time step considered. In this situation, we 

have that 𝜅 = ⌊ 
𝑡+Δ𝑡−

𝑥𝑛𝑖𝑛𝑖
−𝑥0

𝑣𝑓

Δ𝑡
⌋ and 𝑙 = ⌊

𝑡+Δ𝑡

Δ𝑡
⌋. In the original Lax-Hopf method, the process 

required to compute the downstream boundary condition block at time 𝑡 + Δ𝑡 is shown in Figure 

1. 

  

Figure 30:Required operations to determine the exiting flow (downstream) over the time interval [𝑡,+𝛥𝑡] using 

the classical Lax-Hopf algorithm 
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Equation (4) requires the minimization of  𝑛𝑖𝑛𝑖 + 𝜅 + 1 explicitly computed functions to derive 

the upstream supply of the link when 𝑡 + Δ𝑡 ≥
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑣𝑓
. The objective of the Fast Lax Hopf 

algorithm is to decrease the required number of operations (in comparison to the Lax-Hopf 

algorithm), while still computing the average demand and supply functions exactly. 

 

We now introduce a set of rules that allows one to reduce the number of required calculations 

with respect to the original LH algorithm. 

 

Theorem 1: Let set of 𝑛𝑖𝑛𝑖 initial conditions be defined as in (1). Let us further assume that 

𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′) ≤ 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′) for a time 𝑡′ ≥
𝑥𝑛𝑖𝑛𝑖−𝑥𝑖+1

𝑣𝑓
, with 𝑖 < 𝑗. Then: 

∀ 𝑡 ≥ 𝑡′, 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡)            

                                                                                                                            

Proof: using the structure of the solution to initial conditions (Appendix I), we have that both 

𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥𝑛𝑖𝑛𝑖 ,⋅) and 𝑁

𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 ,⋅) are defined on [𝑡′, +∞), continuous and convex functions. 

Hence, both functions have subderivatives (noted 𝜕−), and are differentiable almost everywhere 

on their domain. These subderivatives can be computed from the expression of the initial 

solutions as follows: 

 

Let 𝑣𝑖 ∈ 𝜕+𝑄(𝑘𝑖)   (if 𝑣𝑖 ≤ 0 then only the third case of the below equation remains). 
 

𝜕−𝑁𝑐
𝑖𝑛𝑖𝑖
(𝑥𝑛𝑖𝑛𝑖 , 𝑡)

=

{
  
 

  
 {𝑄(𝑘𝑖)}           ∶

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑣𝑖
≤ 𝑡 ≤

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖

𝑣𝑖
 

{𝑅 (
𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑡
)} −

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑡
⋅ 𝜕−𝑅 (

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑡
) ∶  

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑣𝑓
≤ 𝑡 ≤  

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑣𝑖
    

{𝑅 (
𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖

𝑡
)} −

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖

𝑡
⋅ 𝜕−𝑅 (

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖

𝑡
) : 𝑡 ≥

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖

𝑣𝑖
         

 

 

(6
) 
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Using the Legendre-Fenchel inversion formula (Aubin Bayen Saint Pierre 2008), we have: 

𝑘 ∈ 𝜕−𝑅 (
𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑡
)  ⟺ 

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑡
∈  𝜕+𝑄(𝑘) 

Hence, we have that {𝑅 (
𝑥𝑛𝑖𝑛𝑖−𝑥𝑖+1

𝑡
) −

𝑥𝑛𝑖𝑛𝑖−𝑥𝑖+1

𝑡
⋅ 𝑘} = {𝑄(𝑘)} ⊂ {𝑅 (

𝑥𝑛𝑖𝑛𝑖−𝑥𝑖+1

𝑡
)} −

𝑥𝑛𝑖𝑛𝑖−𝑥𝑖+1

𝑡
⋅

𝜕−𝑅 (
𝑥𝑛𝑖𝑛𝑖−𝑥𝑖+1

𝑡
) for 𝑘 ∈ 𝜕−𝑅 (

𝑥𝑛𝑖𝑛𝑖−𝑥𝑖+1

𝑡
). 

The same property can be applied to (6), allowing us to rewrite it as: 

 

𝜕−𝑁𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡)

=

{
  
 

  
 {𝑄(𝑘𝑖)}        ∶

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑣𝑖
< 𝑡 <

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖

𝑣𝑖
 

{𝑄(𝑘), 𝑘 ∈  𝜕−𝑅 (
𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑡
) }: 

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑣𝑓
< 𝑡 <  

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑣𝑖
    

{𝑄(𝑘), 𝑘 ∈ 𝜕−𝑅 (
𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖

𝑡
)} : 𝑡 >

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖

𝑣𝑖
         

 
(7) 

 

We can rewrite 𝜕−𝑁𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) as 𝜕−𝑁𝑐𝑖𝑛𝑖

𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) = 𝑄(𝑘𝑖(𝑡)) where 𝑘𝑖(𝑡) is the set-valued 

map defined by: 

𝑘𝑖(𝑡) =

{
  
 

  
 𝑘𝑖 = 𝜕−(𝑣𝑖)       ∶

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑣𝑖
< 𝑡 <

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖

𝑣𝑖
 

𝜕−𝑅 (
𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑡
)   ∶  

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑣𝑓
< 𝑡 <  

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖+1

𝑣𝑖
    

𝜕−𝑅 (
𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖

𝑡
)    ∶      𝑡 >

𝑥𝑛𝑖𝑛𝑖 − 𝑥𝑖

𝑣𝑖
         

 

 

(8) 

It can be verified from this expression that 𝑘𝑖(𝑡) ≤ 𝑘𝑗(𝑡) when 𝑖 < 𝑗, for 𝑡 >
𝑥𝑛𝑖𝑛𝑖−𝑥𝑖+1

𝑣𝑓
. Indeed, 

since 𝑅(⋅) is convex, we have that 𝑎 ≤ 𝑏 ⟹ 𝜕−𝑅(𝑎) ≤  𝜕−𝑅(𝑏), in the sense of the interval 
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order (partial order over the set of intervals of ℝ), and since 𝑖 < 𝑗, we have  
𝑥𝑛𝑖𝑛𝑖−𝑥𝑗+1

𝑡
≤

𝑥𝑛𝑖𝑛𝑖−𝑥𝑗

𝑡
≤

𝑥𝑛𝑖𝑛𝑖−𝑥𝑖+1

𝑡
≤

𝑥𝑛𝑖𝑛𝑖−𝑥𝑖

𝑡
. 

Hence,  we have that  𝜕−𝑁𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≤ 𝜕−𝑁𝑐𝑖𝑛𝑖

𝑗
(𝑥𝑛𝑖𝑛𝑖 , 𝑡) since (in the sense of the interval 

order) for all times 𝑡 ≥ 𝑡′ if 𝑖 < 𝑗. 

Therefore, given that 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′) ≤ 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′), we have (by integration) that 

𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡). 

 

Theorem 2: Let set of 𝑛𝑖𝑛𝑖 initial conditions be defined as in (1). Let a set of upstream boundary 

conditions be defined as in Eq. 3.14. Let us assume that 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′) ≥ 𝑁
𝑐𝑢𝑝
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′) for 

some 𝑖 ∈ [1, 𝑛𝑖𝑛𝑖], for some time 𝑡′ > 𝑡𝑗 +
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑣𝑓
. We have that ∀𝑡 > 𝑡′, 𝑁

𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′) ≥

𝑁
𝑐𝑢𝑝
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′). 

 

Proof: given the structure of the solution to boundary conditions, and using a similar reasoning 

as in the proof or Theorem 1, we have that:  

𝜕−𝑁𝑐𝑢𝑝𝑗(𝑥𝑛𝑖𝑛𝑖 , 𝑡)

=

{
 
 

 
 

𝑄(𝜌𝑗)  ∶  𝑥0 + 𝑣𝑗(𝑡 − 𝑡𝑗+1) ≤ 𝑥 ≤ 𝑥0 + 𝑣𝑗(𝑡 − 𝑡𝑗)

{𝑄(𝑘), 𝑘 ∈  𝜕−𝑅 (
𝑥𝑛𝑖𝑛𝑖 − 𝑥0

𝑡 − 𝑡𝑗
) }  ∶  𝑥0 + 𝑣𝑗(𝑡 − 𝑡𝑗) ≤ 𝑥 ≤ 𝑥0 + 𝑣𝑓(𝑡 − 𝑡𝑗)

{𝑄(𝑘), 𝑘 ∈  𝜕−𝑅 (
𝑥𝑛𝑖𝑛𝑖 − 𝑥0

𝑡 − 𝑡𝑗+1
) }  ∶  𝑥0 ≤ 𝑥 ≤ 𝑥0 + 𝑣𝑗(𝑡 − 𝑡𝑗+1)

 
(9) 

 

which can be rewritten as: 𝜕−𝑁𝑐𝑢𝑝𝑗(𝑥𝑛𝑖𝑛𝑖 , 𝑡) = 𝑄(𝑘𝑗(𝑡)) where: 
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𝑘𝑗(𝑡) =

{
 
 

 
 

𝜌𝑗  ∶  𝑥0 + 𝑣𝑗(𝑡 − 𝑡𝑗+1) ≤ 𝑥 ≤ 𝑥0 + 𝑣𝑗(𝑡 − 𝑡𝑗)

𝜕−𝑅 (
𝑥𝑛𝑖𝑛𝑖 − 𝑥0

𝑡 − 𝑡𝑗
)  ∶  𝑥0 + 𝑣𝑗(𝑡 − 𝑡𝑗) ≤ 𝑥 ≤ 𝑥0 + 𝑣𝑓(𝑡 − 𝑡𝑗)

𝜕−𝑅 (
𝑥𝑛𝑖𝑛𝑖 − 𝑥0

𝑡 − 𝑡𝑗+1
)  ∶  𝑥0 ≤ 𝑥 ≤ 𝑥0 + 𝑣𝑗(𝑡 − 𝑡𝑗+1)

 (10) 

 

 

It is straightforward to verify from both the above expression and Equation 15 in Theorem 1 that 

𝑘𝑗(𝑡) ≤ 𝑘𝑖(𝑡) for all 𝑡 > 𝑡𝑗 +
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑣𝑓
. This results again from the convexity of 𝑅(⋅), which 

implies that its subderivative is increasing. 

Hence, we have that 𝜕−𝑁𝑐𝑢𝑝
𝑗
(𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≤ 𝜕−𝑁𝑐𝑖𝑛𝑖

𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) for all times 𝑡 > 𝑡𝑗 +
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑣𝑓
, and thus 

in particular for 𝑡 > 𝑡′. Therefore, given that 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′) ≥ 𝑁
𝑐𝑢𝑝
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′), we have that 

∀𝑡 > 𝑡′, 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′) ≥ 𝑁
𝑐𝑢𝑝
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′). 

 

Theorem 3: Let a set of upstream boundary conditions be defined as in Eq. 3.14. Let us assume 

that 𝑁
𝑐𝑢𝑝
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′) ≤ 𝑁𝑐𝑢𝑝𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡
′) for some, for some 𝑖 < 𝑗, for some time 𝑡′ > 𝑡𝑗 +

𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑣𝑓
. 

We have that ∀𝑡 > 𝑡′, 𝑁
𝑐𝑢𝑝
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′) ≤ 𝑁𝑐𝑢𝑝𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡
′).  

 

Proof: The proof follows directly from the structure of the subderivative Eq. 9 and Eq. 10, 

remarking that if 𝑖 < 𝑗, and 𝑡 > 𝑡𝑗 +
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑣𝑓
, then 𝑘𝑗(𝑡) < 𝑘𝑖(𝑡), and thus, 𝜕−𝑁𝑐𝑢𝑝

𝑗
(𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≤

𝜕−𝑁𝑐𝑢𝑝
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡), which implies that ∀𝑡 > 𝑡′,  𝑁

𝑐𝑢𝑝
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′) ≤ 𝑁𝑐𝑢𝑝𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡
′). 

 

Equivalent properties can be derived for 𝑥 = 𝑥0 (upstream boundary), leading to the following 

theorems, which can be proved in a similar way as theorems 1, 2 and 3. For compactness we 

omit the proofs of these results, which are similar to the proofs outlined above. 
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Theorem 4: Let set of 𝑛𝑖𝑛𝑖 initial conditions be defined as in (1). Let us further assume that 

𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡

′) ≤ 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥0, 𝑡

′) for a time 𝑡′ ≥
𝑥𝑖−𝑥0

𝑤
, with 𝑗 < 𝑖. Then: 

∀ 𝑡 ≥ 𝑡′, 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑗 (𝑥0, 𝑡)            

 

Theorem 5: Let set of 𝑛𝑖𝑛𝑖 initial conditions be defined as in (1). Let a set of downstream 

boundary conditions be defined as in Eq. 3.15. Let us assume that 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡

′) ≥ 𝑁
𝑐𝑑𝑜𝑤𝑛
𝑗 (𝑥0, 𝑡

′) 

for some 𝑖 ∈ [1, 𝑛𝑖𝑛𝑖], for some time 𝑡′ > 𝑡𝑗 +
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑤
. We have that ∀𝑡 > 𝑡′, 𝑁

𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡

′) ≥

𝑁
𝑐𝑑𝑜𝑤𝑛
𝑗 (𝑥0, 𝑡

′). 

 

Theorem 6: Let a set of downstream boundary conditions be defined as in Eq. 3.15. Let us 

assume that 𝑁
𝑐𝑢𝑝
𝑗 (𝑥0, 𝑡

′) ≤ 𝑁𝑐𝑢𝑝𝑖
(𝑥0, 𝑡

′) for some, for some 𝑖 < 𝑗, for some time 𝑡′ > 𝑡𝑗 +

𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑤
. We have that ∀𝑡 > 𝑡′, 𝑁

𝑐𝑢𝑝
𝑗 (𝑥0, 𝑡

′) ≤ 𝑁𝑐𝑢𝑝𝑖
(𝑥0, 𝑡

′).  

 

The Fast Lax-Hopf algorithm leverages the outlined theorems to reduce the number of 

calculations required to determine the solutions at a given boundary (upstream or downstream) 

of the domain. The Fast Lax-Hopf algorithm is summarized in Figure 2 below, for the 

computation of the downstream demand over time, over a single road link. 
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Figure 31: required operations to determine the exiting flow (downstream) over the time interval [𝑡,+𝛥𝑡] using 

the Fast Lax-Hopf algorithm 

 

Given its similar structure as the Lax-Hopf algorithm (only with less operations), the FLH 

algorithm has a complexity that is upper bounded by that of the Lax-Hopf algorithm, while still 

retaining the exactness of the former for single link problems with piecewise constant demand 

and supply functions. Note that exactness is lost (as with all other algorithms available, except 

possibly wave-front tracking) on network problems since boundary demand and supply functions 

are not piecewise constant in general.  

FAST LAX-HOPF ALGORITHM FOR TRIANGULAR FUNDAMENTAL DIAGRAMS 

In this section, the Fast Lax-Hopf Algorithm formulation for triangular fundamental diagrams 

(FDs) is presented. A more specific formulation is derived for particular situations where initial 

conditions have constant size and the time step satisfies the CFL condition. 
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SPECIFIC FORMULATION OF TRIANGULAR FDS  

In the specific case of a triangular fundamental diagram, the convex transform 𝑅(⋅) is affine: 

 

∀𝑢 ∈ [−𝑤, 𝑣], 𝑅(𝑢) = 𝑘𝑐(𝑣 − 𝑢) (11) 

 

and the solutions to affine initial, upstream or downstream boundary conditions are piecewise 

linear, as shown in Mazare et al. (2011), and can be written explicitly. In particular, the solution 

at any arbitrary point (𝑡, 𝑥) depends only upon at one specific (predictable) upstream boundary 

condition block, and one downstream boundary condition block, leading to the following: 

𝑁(𝑥, 𝑡) = min(𝑚𝑖𝑛𝑖≤𝑗≤𝑛𝑖𝑛𝑖𝑁𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡), 𝑁𝑐𝑑𝑜𝑤𝑛

⌊
𝑡

Δ𝑡
−
𝑥𝑛𝑖𝑛𝑖

−𝑥0

𝑤 Δ𝑡
⌋
(𝑥, 𝑡), 𝑁𝑐𝑢𝑝

⌊
𝑡

Δ𝑡
−
𝑥𝑛𝑖𝑛𝑖

−𝑥0

𝑣𝑓 Δ𝑡
⌋

(𝑥, 𝑡))    (12) 

 

Furthermore, the number of required operations required to compute the solution at an arbitrary 

point (𝑡, 𝑥) of the computational domain can also be reduced as follows: 

 

Corollary 1: Let a set of 𝑛𝑖𝑛𝑖 initial conditions be defined as in (8), with Lipschitz continuity 

constraints (2) and (3).  Let us further assume that 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡𝑠) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡𝑠) for a time 𝑡𝑠 ≥

𝑥𝑖+1−𝑥

𝑤
, with 𝑖 < 𝑗. Then: 

 

∀ 𝑡 ≥ 𝑠, 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡)   (13) 

 

Proof: using the structure of the solutions 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡), we have that 𝑁

𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡𝑠)  +

(𝑡𝑠 − 𝑡)𝑣 𝑘𝑐 if 𝑡𝑠 ≥
𝑥𝑖+1−𝑥

𝑤
 and 𝑖 < 𝑗, irrespective of the value of 𝑘𝑗. We also have that 

𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡) = 𝑁

𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡𝑠) + (𝑡𝑠 − 𝑡)𝑣 𝑘𝑐 . Since 𝑁

𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡𝑠) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡𝑠), we have that  ∀ 𝑡 ≥

𝑡𝑠, 𝑁𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡) ≤ 𝑁𝑐𝑖𝑛𝑖

𝑖 (𝑥, 𝑡).  
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This theorem implies that inside the computational domain, if the solution associated to a 

particular initial condition piece j is lower than the solution associated with another initial 

condition piece 𝑖 (with 𝑖 < 𝑗), for a location 𝑥 and time 𝑡𝑠 such that 𝑡𝑠 ≥
𝑥𝑖+1−𝑥

𝑤
, then the solution 

associated with piece 𝑖 cannot influence the solution (at the same location) at subsequent times.  

 

Corollary 2: Let a set of 𝑛𝑖𝑛𝑖 initial conditions be defined as in (8), with Lipschitz continuity 

constraints (2) and (3).  Let us further assume that 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡𝑉) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡𝑉) for some 𝑡𝑉 ≥

𝑥−𝑥𝑖

𝑣𝑓
, 

with 𝑖 > 𝑗. Then: 

 

∀ 𝑡 ≥ 𝑡𝑉, 𝑁𝑐𝑖𝑛𝑖
𝑗 (𝑥0, 𝑡) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡) (14) 

 

Proof: using the structure of the solutions 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡), we have that 𝑁

𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡) = 𝑁

𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡𝑉)  +

(𝑡𝑉 − 𝑡)𝑣 𝑘𝑐 if 𝑡𝑉 ≥
𝑥−𝑥𝑖

𝑣
 and 𝑖 > 𝑗, irrespective of the value of 𝑘𝑗. We also have that 

𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡𝑉) + (𝑡𝑉 − 𝑡)𝑣 𝑘𝑐. Hence, we have that  ∀ 𝑡 ≥ 𝑡𝑉, 𝑁𝑐𝑖𝑛𝑖

𝑗 (𝑥, 𝑡) ≤

𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡).  

 

This result similarly allows us to exclude a priori some terms from (12), and can be used to speed 

up computations inside the computational domain. Hence, with the above rules, the computation 

of the solution at any point of the computational domain can be further simplified as: 

𝑁(𝑥, 𝑡) = min(𝑚𝑖𝑛𝑗∈𝑆(𝑥,𝑡) 𝑁𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡), 𝑁𝑐𝑑𝑜𝑤𝑛

⌊
𝑡

Δ𝑡
−
𝑥𝑛𝑖𝑛𝑖

−𝑥0

𝑤 Δ𝑡
⌋
(𝑥, 𝑡), 𝑁𝑐𝑢𝑝

⌊
𝑡

Δ𝑡
−
𝑥𝑛𝑖𝑛𝑖

−𝑥0

𝑣𝑓 Δ𝑡
⌋

(𝑥, 𝑡))    (15) 

 

where 𝑆(𝑥, 𝑡) is the set of initial conditions indices used for the computation 𝑁(𝑥, 𝑡), which is 

updated using Corollary 1 and Corollary 2. 
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Note that 𝑆(𝑥, 𝑡) depends on the structure of the initial conditions, and is difficult to compute a-

priori, though it can be iteratively computed on a computer using Corollary 1 and Corollary 2. If, 

in addition, the solution is computed at the boundaries of the domain, and the discretization of 

the initial conditions follows a CFL-type condition, 𝑆(𝑥, 𝑡) can be computed straightforwardly.  

 

FORMULATION FOR SPECIFIC SPATIO-TEMPORAL DISCRETIZATIONS 

In this section, we further assume that the domains of the initial condition satisfy 𝑥𝑖 = 𝑥0 + 𝑖Δ𝑥 

(where 𝑖 ∈ 𝑁), that is, that the initial conditions are piecewise constant on domains of constant 

size Δ𝑥. We also assume that the space and time steps satisfy a CFL-type condition: Δ𝑡 ≤
Δ𝑥

𝑣
 . In 

this situation, we can prove the two following results (for the upstream boundary, the 

downstream boundary case being similar), which further simplify the computation of the solution 

at the upstream and downstream boundaries: 

 

Corollary 3: Let a set of 𝑛𝑖𝑛𝑖 initial conditions be defined as in (1), with Lipschitz continuity 

constraints (2) and (3). Let us further assume that 𝑥𝑖 = 𝑥0 + 𝑖Δ𝑥 and Δ𝑡 ≤
Δ𝑥

𝑣
. For any discrete 

time 𝑡 = 𝑖 ⋅ Δ𝑡, 𝑖 ∈ 𝑁 we have that: 

 

𝑁(𝑥0, 𝑡) =

{
 
 

 
 min (𝑁

𝑐𝑖𝑛𝑖
𝑙 (𝑥0, 𝑡), 𝑁𝑐𝑖𝑛𝑖

𝑙−1(𝑥0, 𝑡), 𝑁𝑐𝑢𝑝𝑗(𝑥0, (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡)  𝑖𝑓 𝑡 ≤
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑤

min (𝑁𝑐𝑢𝑝𝑗(𝑥0, (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡, 𝑁𝑑𝑜𝑤𝑛
𝑘(𝑥0, 𝑡))                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                       

(16) 

 

where 𝑗 = 𝑖 − 1, 𝑘 = ⌊
𝑡−

𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑤

Δ𝑡
⌋, 𝑙 = ⌊

𝑤𝑡

Δ𝑥
⌋ 
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Proof: The first case corresponds to the situation where only initial components and upstream 

boundary condition components can influence the upstream condition (𝑡 ≤
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑤
). In this 

situation, we have that 𝑁
𝑐𝑖𝑛𝑖
𝑘 (𝑥0, 𝑡) = +∞ if 𝑘 > 𝑙. Hence, we can write that 𝑁(𝑥0, 𝑡) =

 min (𝑁𝑐𝑖𝑛𝑖
0 (𝑥0, 𝑡), … , 𝑁𝑐𝑖𝑛𝑖

𝑙−1(𝑥0, 𝑡), 𝑁𝑐𝑖𝑛𝑖
𝑙 (𝑥0, 𝑡), 𝑁𝑐𝑢𝑝𝑗(𝑥0, (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡). However, by 

the structure of the initial condition solution components (12), we have that for any 𝑘 ∈

[0, 𝑙 − 2], 𝑁
𝑐𝑖𝑛𝑖
𝑘 (𝑥0, 𝑡) = 𝑁

𝑐𝑖𝑛𝑖
𝑘 (𝑥0, (𝑖 − 1)Δ𝑡) + 𝑣𝑘𝑐(𝑡 − (𝑖 − 1)Δ𝑡). By the inf-morphism 

property 𝑁
𝑐𝑖𝑛𝑖
𝑘 (𝑥0, (𝑖 − 1)Δ𝑡) ≥ 𝑁(𝑥0, (𝑖 − 1)Δ𝑡), and thus, since 𝑁(𝑥0, 𝑡) ≤ 𝑁(𝑥0, (𝑖 −

1)𝛥𝑡) + 𝑘𝑐𝑣(𝑡 − (𝑖 − 1)𝛥𝑡), we have that 𝑁(𝑥0, 𝑡) ≤ 𝑁𝑐𝑖𝑛𝑖
𝑘 (𝑥0, 𝑡) for any 𝑘 ∈ {0, … , 𝑙 − 2}, 

which shows that only 𝑁
𝑐𝑖𝑛𝑖
𝑙−1 or 𝑁

𝑐𝑖𝑛𝑖
𝑙 can influence the solution in (𝑥0, 𝑡). The proof of the second 

case is similar.  

 

Corollary 4: Let a set of 𝑛𝑖𝑛𝑖 initial conditions be defined as in (8), with Lipschitz continuity 

constraints (2) and (3). Let us further assume that 𝑥𝑖 = 𝑥0 + 𝑖Δ𝑥 and Δ𝑡 ≤
Δ𝑥

𝑣
. For any discrete 

time 𝑡 = 𝑖 ⋅ Δ𝑡 (𝑖 ∈ 𝑁) we have that: 

 

𝑁(𝑥𝑛𝑖𝑛𝑖 , 𝑡)

=

{
 
 

 
 min (𝑁

𝑐𝑖𝑛𝑖
𝑙 (𝑥𝑛𝑖𝑛𝑖 , 𝑡), 𝑁𝑐𝑖𝑛𝑖

𝑙+1(𝑥𝑛𝑖𝑛𝑖 , 𝑡), 𝑁𝑐𝑑𝑜𝑤𝑛𝑗(𝑥𝑛𝑖𝑛𝑖 , (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡)  𝑖𝑓 𝑡 ≤
𝑥𝑛𝑖𝑛𝑖 − 𝑥0

𝑣

min (𝑁𝑐𝑑𝑜𝑤𝑛𝑗(𝑥𝑛𝑖𝑛𝑖 , (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡, 𝑁𝑢𝑝
𝑘(𝑥𝑛𝑖𝑛𝑖 , 𝑡))                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (17) 

 

where 𝑗 = 𝑖 − 1, 𝑘 = ⌊
𝑡−

𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑣

Δ𝑡
⌋, 𝑙 = ⌊

𝑣𝑡

Δ𝑥
⌋ 

 

Proof: The first case corresponds to the situation where only initial components and upstream 

boundary condition components can influence the upstream condition (𝑡 ≤
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑣
). In this 
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situation, we have that 𝑁
𝑐𝑖𝑛𝑖
𝑘 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) = +∞ if 𝑘 > 𝑙. Hence, we can write that 𝑁(𝑥𝑛𝑖𝑛𝑖 , 𝑡) =

 min (𝑁𝑐𝑖𝑛𝑖
0 (𝑥𝑛𝑖𝑛𝑖 , 𝑡), … , 𝑁𝑐𝑖𝑛𝑖

𝑙−1(𝑥𝑛𝑖𝑛𝑖 , 𝑡), 𝑁𝑐𝑖𝑛𝑖
𝑙 (𝑥𝑛𝑖𝑛𝑖 , 𝑡), 𝑁𝑐𝑢𝑝𝑗(𝑥𝑛𝑖𝑛𝑖 , (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡). 

However, by the structure of the initial condition solution components (4), we have that for any 

𝑘 ∈ [0, 𝑙 − 2], 𝑁
𝑐𝑖𝑛𝑖
𝑘 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) = 𝑁

𝑐𝑖𝑛𝑖
𝑘 (𝑥𝑛𝑖𝑛𝑖 , (𝑖 − 1)Δ𝑡) + 𝑣𝑘𝑐(𝑡 − (𝑖 − 1)Δ𝑡). By the inf-

morphism property 𝑁
𝑐𝑖𝑛𝑖
𝑘 (𝑥𝑛𝑖𝑛𝑖 , (𝑖 − 1)Δ𝑡) ≥ 𝑁(𝑥𝑛𝑖𝑛𝑖 , (𝑖 − 1)Δ𝑡), and thus, since 𝑁(𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≤

𝑁(𝑥𝑛𝑖𝑛𝑖 , (𝑖 − 1)𝛥𝑡) + 𝑘𝑐𝑣(𝑡 − (𝑖 − 1)𝛥𝑡), we have that 𝑁(𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≤ 𝑁
𝑐𝑖𝑛𝑖
𝑘 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) for any 𝑘 ∈

{0,… , 𝑙 − 2}, which shows that only 𝑁
𝑐𝑖𝑛𝑖
𝑙+1 or 𝑁

𝑐𝑖𝑛𝑖
𝑙 can influence the solution in (𝑥𝑛𝑖𝑛𝑖 , 𝑡). The 

proof of the second case is similar. 

 

The above results (and their downstream boundary condition counterparts) imply that, when 

computing the upstream and downstream conditions in the initial phase of the computation, the 

associated solutions can be computed on just two consecutive blocks (Figure 3a-b). Furthermore 

subsequent computations of the solutions at the upstream and downstream boundaries (outside of 

the area of influence of the initial conditions) can be reduced to those in the classical LTM 

formulation. The FLH scheme thus computes the boundary conditions with a slightly higher 

computational cost as the LTM during the initial phase of the simulation (in the domain of 

influence of the initial condition), requiring two operations to account for the initial conditions 

instead of one. For subsequent times both formulations (LTM and FLH) are identical, and thus 

have the same computational cost. 
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(a) 

 

(b) 

Figure 32: Initial conditions considered for computation of flows upstream (a) and downstream (b) according to 

Theorem 5 and Theorem 6  
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