7 research outputs found

    Self-Selective Correlation Ship Tracking Method for Smart Ocean System

    Full text link
    In recent years, with the development of the marine industry, navigation environment becomes more complicated. Some artificial intelligence technologies, such as computer vision, can recognize, track and count the sailing ships to ensure the maritime security and facilitates the management for Smart Ocean System. Aiming at the scaling problem and boundary effect problem of traditional correlation filtering methods, we propose a self-selective correlation filtering method based on box regression (BRCF). The proposed method mainly include: 1) A self-selective model with negative samples mining method which effectively reduces the boundary effect in strengthening the classification ability of classifier at the same time; 2) A bounding box regression method combined with a key points matching method for the scale prediction, leading to a fast and efficient calculation. The experimental results show that the proposed method can effectively deal with the problem of ship size changes and background interference. The success rates and precisions were higher than Discriminative Scale Space Tracking (DSST) by over 8 percentage points on the marine traffic dataset of our laboratory. In terms of processing speed, the proposed method is higher than DSST by nearly 22 Frames Per Second (FPS)

    Guest editorial : Introduction to the special issue on connected vehicles in intelligent transportation systems

    Get PDF
    Connected vehicles (CVs) are one of the critical components of intelligent transportation systems. CVs enable any vehicle to act as a smart node that collects and shares information on vehicles, roads, and their surroundings. This information can then be distributed to other vehicles via vehicle-to-vehicle (V2V) communication, and also to road users via vehicle-to-human (V2H) communication, for an improved driving experience. The information can also be forwarded toward traffic control systems via vehicle-to-infrastructure (V2I) communication, for improved traffic management and road safety. Making use of of connected vehicles in intelligent transportation systems will revolutionize the way we drive. Many issues, however, need to be resolved to achieve better performance of connected vehicles. Improvements relate to data processing and storage, the development of standards and regulations across all platforms, design and deployment of new communication protocols and system architectures, and the creation and introduction of new services and applications.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979hj2018Electrical, Electronic and Computer Engineerin

    Multimodal Subspace Support Vector Data Description

    Get PDF
    In this paper, we propose a novel method for projecting data from multiple modalities to a new subspace optimized for one-class classification. The proposed method iteratively transforms the data from the original feature space of each modality to a new common feature space along with finding a joint compact description of data coming from all the modalities. For data in each modality, we define a separate transformation to map the data from the corresponding feature space to the new optimized subspace by exploiting the available information from the class of interest only. We also propose different regularization strategies for the proposed method and provide both linear and non-linear formulations. The proposed Multimodal Subspace Support Vector Data Description outperforms all the competing methods using data from a single modality or fusing data from all modalities in four out of five datasets.Comment: 26 pages manuscript (6 tables, 2 figures), 24 pages supplementary material (27 tables, 10 figures). The manuscript and supplementary material are combined as a single .pdf (50 pages) fil

    A self-selective correlation ship tracking method for smart ocean systems

    Get PDF
    In recent years, with the development of the marine industry, the ship navigation environment has become more complicated. Some artificial intelligence technologies, such as computer vision, can recognize, track and count sailing ships to ensure maritime security and facilitate management for Smart Ocean systems. Aiming at the scaling problem and boundary effect problem of traditional correlation filtering methods, we propose a self-selective correlation filtering method based on box regression (BRCF). The proposed method mainly includes: (1) A self-selective model with a negative samples mining method which effectively reduces the boundary effect in strengthening the classification ability of the classifier at the same time; (2) a bounding box regression method combined with a key points matching method for the scale prediction, leading to a fast and efficient calculation. The experimental results show that the proposed method can effectively deal with the problem of ship size changes and background interference. The success rates and precisions were over 8 % higher than Discriminative Scale Space Tracking (DSST) on the marine traffic dataset of our laboratory. In terms of processing speed, the proposed method is higher than DSST by nearly 22 frames per second (FPS).This research was supported by the National Natural Science Foundation of China under Grant (No. 61772387 and No. 61802296), the Fundamental Research Funds of Ministry of Education and China Mobile (MCM20170202), the Fundamental Research Funds for the Central Universities (JB180101), China Postdoctoral Science Foundation Grant (No. 2017M620438), and supported by ISN State Key Laboratory

    Subspace Support Vector Data Description and Extensions

    Get PDF
    Machine learning deals with discovering the knowledge that governs the learning process. The science of machine learning helps create techniques that enhance the capabilities of a system through the use of data. Typical machine learning techniques identify or predict different patterns in the data. In classification tasks, a machine learning model is trained using some training data to identify the unknown function that maps the input data to the output labels. The classification task gets challenging if the data from some categories are either unavailable or so diverse that they cannot be modelled statistically. For example, to train a model for anomaly detection, it is usually challenging to collect anomalous data for training, but the normal data is available in abundance. In such cases, it is possible to use One-Class Classification (OCC) techniques where the model is trained by using data only from one class. OCC algorithms are practical in situations where it is vital to identify one of the categories, but the examples from that specific category are scarce. Numerous OCC techniques have been proposed in the literature that model the data in the given feature space; however, such data can be high-dimensional or may not provide discriminative information for classification. In order to avoid the curse of dimensionality, standard dimensionality reduction techniques are commonly used as a preprocessing step in many machine learning algorithms. Principal Component Analysis (PCA) is an example of a widely used algorithm to transform data into a subspace suitable for the task at hand while maintaining the meaningful features of a given dataset. This thesis provides a new paradigm that jointly optimizes a subspace and data description for one-class classification via Support Vector Data Description (SVDD). We initiated the idea of subspace learning for one class classification by proposing a novel Subspace Support Vector Data Description (SSVDD) method, which was further extended to Ellipsoidal Subspace Support Vector Data Description (ESSVDD). ESSVDD generalizes SSVDD for a hypersphere by using ellipsoidal data description and it converges faster than SSVDD. It is important to train a joint model for multimodal data when data is collected from multiple sources. Therefore, we also proposed a multimodal approach, namely Multimodal Subspace Support Vector Data Description (MSSVDD) for transforming the data from multiple modalities to a common shared space for OCC. An important contribution of this thesis is to provide a framework unifying the subspace learning methods for SVDD. The proposed Graph-Embedded Subspace Support Vector Data Description (GESSVDD) framework helps revealing novel insights into the previously proposed methods and allows deriving novel variants that incorporate different optimization goals. The main focus of the thesis is on generic novel methods which can be adapted to different application domains. We experimented with standard datasets from different domains such as robotics, healthcare, and economics and achieved better performance than competing methods in most of the cases. We also proposed a taxa identification framework for rare benthic macroinvertebrates. Benthic macroinvertebrate taxa distribution is typically very imbalanced. The amounts of training images for the rarest classes are too low for properly training deep learning-based methods, while these rarest classes can be central in biodiversity monitoring. We show that the classic one-class classifiers in general, and the proposed methods in particular, can enhance a deep neural network classification performance for imbalanced datasets
    corecore