18,762 research outputs found

    ViLDAR - Visible Light Sensing Based Speed Estimation using Vehicle's Headlamps

    Full text link
    The introduction of light emitting diodes (LED) in automotive exterior lighting systems provides opportunities to develop viable alternatives to conventional communication and sensing technologies. Most of the advanced driver-assist and autonomous vehicle technologies are based on Radio Detection and Ranging (RADAR) or Light Detection and Ranging (LiDAR) systems that use radio frequency or laser signals, respectively. While reliable and real-time information on vehicle speeds is critical for traffic operations management and autonomous vehicles safety, RADAR or LiDAR systems have some deficiencies especially in curved road scenarios where the incidence angle is rapidly varying. In this paper, we propose a novel speed estimation system so-called the Visible Light Detection and Ranging (ViLDAR) that builds upon sensing visible light variation of the vehicle's headlamp. We determine the accuracy of the proposed speed estimator in straight and curved road scenarios. We further present how the algorithm design parameters and the channel noise level affect the speed estimation accuracy. For wide incidence angles, the simulation results show that the ViLDAR outperforms RADAR/LiDAR systems in both straight and curved road scenarios. A provisional patent (US#62/541,913) has been obtained for this work

    Robust Obstacle Detection based on Dense Disparity Maps

    Get PDF
    Obstacle detection is an important component for many autonomous vehicle navigation systems. Several methods for obstacle detection have been proposed using various active sensors such as radar, sonar and laser range finders. Vision based techniques have the advantage of low cost and provide a large amount of information about the environment around an intelligent vehicle. This paper deals with the development of an accurate and efficient vision based obstacle detection method which relies on a wavelet analysis. The development system will be integrated on the Cybercar platform which is a road vehicle with fully automated driving capabilities

    Design of a scanning laser radar for spaceborne applications, phase 3

    Get PDF
    Design of scanning laser radar for spaceborne application

    The Continuing Quest for Missile Defense: When Lofty Goals Confront Reality

    Full text link
    For almost three quarters of a century, the United States has spent billions of dollars and countless person-hours in the pursuit of a national missile defense system that would protect the country from intercontinental ballistic missiles (ICBM) carrying nuclear warheads. The system currently in place consists of 44 long-range antiballistic missiles stationed in Alaska and California to protect the United States from a possible nuclear weapon carrying ICBM attack from North Korea. After all this effort, this system is still imperfect, being successful only 10 out of 18 tests. This book will provide an historical description of past efforts in national missile defenses to understand the technical difficulties involved. It will also explain how national security concerns, the evolving international environment, and the complexities of US politics have all affected the story. The book will also describe the current systems in place to protect allies and troops in the field from the threat of shorter range missiles. Finally, the book will describe the current US vision for the future of missile defenses and provide some suggestions for alternative paths.https://cupola.gettysburg.edu/books/1142/thumbnail.jp
    corecore