5 research outputs found

    Advanced concepts for intelligent vision systems

    Get PDF

    Watershed Monitoring in Galicia from UAV Multispectral Imagery Using Advanced Texture Methods

    Get PDF
    Watershed management is the study of the relevant characteristics of a watershed aimed at the use and sustainable management of forests, land, and water. Watersheds can be threatened by deforestation, uncontrolled logging, changes in farming systems, overgrazing, road and track construction, pollution, and invasion of exotic plants. This article describes a procedure to automatically monitor the river basins of Galicia, Spain, using five-band multispectral images taken by an unmanned aerial vehicle and several image processing algorithms. The objective is to determine the state of the vegetation, especially the identification of areas occupied by invasive species, as well as the detection of man-made structures that occupy the river basin using multispectral images. Since the territory to be studied occupies extensive areas and the resulting images are large, techniques and algorithms have been selected for fast execution and efficient use of computational resources. These techniques include superpixel segmentation and the use of advanced texture methods. For each one of the stages of the method (segmentation, texture codebook generation, feature extraction, and classification), different algorithms have been evaluated in terms of speed and accuracy for the identification of vegetation and natural and artificial structures in the Galician riversides. The experimental results show that the proposed approach can achieve this goal with speed and precisionThis work was supported in part by the Civil Program UAVs Initiative, promoted by the Xunta de Galicia and developed in partnership with the Babcock company to promote the use of unmanned technologies in civil services. We also have to acknowledge the support by the Ministerio de Ciencia e Innovación, Government of Spain (grant number PID2019-104834GB-I00), and Consellería de Educación, Universidade e Formación Profesional (grant number ED431C 2018/19, and accreditation 2019–2022 ED431G-2019/04). All are co-funded by the European Regional Development Fund (ERDF)S

    Técnicas de visión por computador para la detección del verdor y la detección de obstáculos en campos de maíz

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia Artificial, leída el 22/06/2017There is an increasing demand in the use of Computer Vision techniques in Precision Agriculture (PA) based on images captured with cameras on-board autonomous vehicles. Two techniques have been developed in this research. The rst for greenness identi cation and the second for obstacle detection in maize elds, including people and animals, for tractors in the RHEA (robot eets for highly e ective and forestry management) project, equipped with monocular cameras on-board the tractors. For vegetation identi cation in agricultural images the combination of colour vegetation indices (CVIs) with thresholding techniques is the usual strategy where the remaining elements on the image are also extracted. The main goal of this research line is the development of an alternative strategy for vegetation detection. To achieve our goal, we propose a methodology based on two well-known techniques in computer vision: Bag of Words representation (BoW) and Support Vector Machines (SVM). Then, each image is partitioned into several Regions Of Interest (ROIs). Afterwards, a feature descriptor is obtained for each ROI, then the descriptor is evaluated with a classi er model (previously trained to discriminate between vegetation and background) to determine whether or not the ROI is vegetation...Cada vez existe mayor demanda en el uso de t ecnicas de Visi on por Computador en Agricultura de Precisi on mediante el procesamiento de im agenes captadas por c amaras instaladas en veh culos aut onomos. En este trabajo de investigaci on se han desarrollado dos tipos de t ecnicas. Una para la identi caci on de plantas verdes y otra para la detecci on de obst aculos en campos de ma z, incluyendo personas y animales, para tractores del proyecto RHEA. El objetivo nal de los veh culos aut onomos fue la identi caci on y eliminaci on de malas hierbas en los campos de ma z. En im agenes agr colas la vegetaci on se detecta generalmente mediante ndices de vegetaci on y m etodos de umbralizaci on. Los ndices se calculan a partir de las propiedades espectrales en las im agenes de color. En esta tesis se propone un nuevo m etodo con tal n, lo que constituye un objetivo primordial de la investigaci on. La propuesta se basa en una estrategia conocida como \bolsa de palabras" conjuntamente con un modelo se aprendizaje supervisado. Ambas t ecnicas son ampliamente utilizadas en reconocimiento y clasi caci on de im agenes. La imagen se divide inicialmente en regiones homog eneas o de inter es (RIs). Dada una colecci on de RIs, obtenida de un conjunto de im agenes agr colas, se calculan sus caracter sticas locales que se agrupan por su similitud. Cada grupo representa una \palabra visual", y el conjunto de palabras visuales encontradas forman un \diccionario visual". Cada RI se representa por un conjunto de palabras visuales las cuales se cuanti can de acuerdo a su ocurrencia dentro de la regi on obteniendo as un vector-c odigo o \codebook", que es descriptor de la RI. Finalmente, se usan las M aquinas de Vectores Soporte para evaluar los vectores-c odigo y as , discriminar entre RIs que son vegetaci on del resto...Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEunpu

    Classifying and Mapping Aquatic Vegetation in Heterogeneous Stream Ecosystems Using Visible and Multispectral UAV Imagery

    Get PDF
    The need for assessment and management of aquatic vegetation in stream ecosystems is recognized given the importance in impacting water quality, hydrodynamics, and aquatic biota. However, existing approaches to monitor are laborious and its currently not feasible to track spatial and temporal differences at broad scales. The objective of this study was therefore to map and classify aquatic vegetation of a shallow stream with heterogenous mixtures of emergent and submerged aquatic vegetation. Data was collected in the Camden Creek watershed within the Inner Bluegrass Region of central Kentucky. The use of unmanned aerial vehicles (UAVs) was employed and both visible (RGB) and multispectral imagery were collected. Machine learning techniques were applied in an off-the-shelf software (QGIS environment) to develop visible and multispectral classification land-cover maps following an effective object-based image analysis workflow. Visible images were additionally coupled with high frequency water quality data to examine the spatial and temporal behavior of the aquatic vegetation. Results showed high overall classification accuracies (OA=83.5% for the training dataset and OA=83.73% for the validation dataset) for the visible imagery, with excellent user’s and producer’s accuracies for duckweed, both for training and validation. Surprisingly, multispectral overall accuracies were substantial (OA=77.8% for the training dataset and OA=70.2% for the validation dataset) but were inferior to the visible classification results. User’s and producer’s accuracies were lower for almost all classes. However, this approach was unsuccessful in detecting, segmenting and classifying submerged aquatic vegetation (algae) for both datasets. Finally, a change detection algorithm was applied to the visible classified maps and the changes in duckweed areal coverage were successfully estimated
    corecore