52,505 research outputs found

    Frequency-Domain Stochastic Modeling of Stationary Bivariate or Complex-Valued Signals

    Get PDF
    There are three equivalent ways of representing two jointly observed real-valued signals: as a bivariate vector signal, as a single complex-valued signal, or as two analytic signals known as the rotary components. Each representation has unique advantages depending on the system of interest and the application goals. In this paper we provide a joint framework for all three representations in the context of frequency-domain stochastic modeling. This framework allows us to extend many established statistical procedures for bivariate vector time series to complex-valued and rotary representations. These include procedures for parametrically modeling signal coherence, estimating model parameters using the Whittle likelihood, performing semi-parametric modeling, and choosing between classes of nested models using model choice. We also provide a new method of testing for impropriety in complex-valued signals, which tests for noncircular or anisotropic second-order statistical structure when the signal is represented in the complex plane. Finally, we demonstrate the usefulness of our methodology in capturing the anisotropic structure of signals observed from fluid dynamic simulations of turbulence.Comment: To appear in IEEE Transactions on Signal Processin

    Democratic Representations

    Full text link
    Minimization of the ℓ∞\ell_{\infty} (or maximum) norm subject to a constraint that imposes consistency to an underdetermined system of linear equations finds use in a large number of practical applications, including vector quantization, approximate nearest neighbor search, peak-to-average power ratio (or "crest factor") reduction in communication systems, and peak force minimization in robotics and control. This paper analyzes the fundamental properties of signal representations obtained by solving such a convex optimization problem. We develop bounds on the maximum magnitude of such representations using the uncertainty principle (UP) introduced by Lyubarskii and Vershynin, and study the efficacy of ℓ∞\ell_{\infty}-norm-based dynamic range reduction. Our analysis shows that matrices satisfying the UP, such as randomly subsampled Fourier or i.i.d. Gaussian matrices, enable the computation of what we call democratic representations, whose entries all have small and similar magnitude, as well as low dynamic range. To compute democratic representations at low computational complexity, we present two new, efficient convex optimization algorithms. We finally demonstrate the efficacy of democratic representations for dynamic range reduction in a DVB-T2-based broadcast system.Comment: Submitted to a Journa

    Learning flexible representations of stochastic processes on graphs

    Full text link
    Graph convolutional networks adapt the architecture of convolutional neural networks to learn rich representations of data supported on arbitrary graphs by replacing the convolution operations of convolutional neural networks with graph-dependent linear operations. However, these graph-dependent linear operations are developed for scalar functions supported on undirected graphs. We propose a class of linear operations for stochastic (time-varying) processes on directed (or undirected) graphs to be used in graph convolutional networks. We propose a parameterization of such linear operations using functional calculus to achieve arbitrarily low learning complexity. The proposed approach is shown to model richer behaviors and display greater flexibility in learning representations than product graph methods
    • …
    corecore