233,969 research outputs found

    Vector field visualization with streamlines

    Get PDF
    We have recently developed an algorithm for vector field visualization with oriented streamlines, able to depict the flow directions everywhere in a dense vector field and the sense of the local orientations. The algorithm has useful applications in the visualization of the director field in nematic liquid crystals. Here we propose an improvement of the algorithm able to enhance the visualization of the local magnitude of the field. This new approach of the algorithm is compared with the same procedure applied to the Line Integral Convolution (LIC) visualization.Comment: 9 pges, 7 figure

    Simplified Representation of Vector Fields

    Get PDF
    Vector field visualization remains a difficult task. Although many local and global visualization methods for vector fields such as flow data exist, they usually require extensive user experience on setting the visualization parameters in order to produce images communicating the desired insight. We present a visualization method that produces simplified but suggestive images of the vector field automatically, based on a hierarchical clustering of the input data. The resulting clusters are then visualized with straight or curved arrow icons. The presented method has a few parameters with which users can produce various simplified vector field visualizations that communicate different insights on the vector data

    On the Computation of Integral Curves in Adaptive Mesh Refinement Vector Fields

    Get PDF
    Integral curves, such as streamlines, streaklines, pathlines, and timelines, are an essential tool in the analysis of vector field structures, offering straightforward and intuitive interpretation of visualization results. While such curves have a long-standing tradition in vector field visualization, their application to Adaptive Mesh Refinement (AMR) simulation results poses unique problems. AMR is a highly effective discretization method for a variety of physical simulation problems and has recently been applied to the study of vector fields in flow and magnetohydrodynamic applications. The cell-centered nature of AMR data and discontinuities in the vector field representation arising from AMR level boundaries complicate the application of numerical integration methods to compute integral curves. In this paper, we propose a novel approach to alleviate these problems and show its application to streamline visualization in an AMR model of the magnetic field of the solar system as well as to a simulation of two incompressible viscous vortex rings merging

    3D Polarized Light Imaging Portrayed: Visualization of Fiber Architecture Derived from 3D-PLI

    Get PDF
    3D polarized light imaging (3D-PLI) is a neuroimaging technique that has recently opened up new avenues to study the complex architecture of nerve fibers in postmortem brains at microscopic scales. In a specific voxel-based analysis, each voxel is assigned a single 3D fiber orientation vector. This leads to comprehensive 3D vector fields. In order to inspect and analyze such high-resolution fiber orientation vector field, also in combination with complementary microscopy measurements, appropriate visualization techniques are essential to overcome several challenges, such as the massive data sizes, the large amount of both unique and redundant information at different scales, or the occlusion issues of inner structures by outer layers. Here, we introduce a comprehensive software tool that is able to visualize all information of a typical 3D-PLI dataset in an adequate and sophisticated manner. This includes the visualization of (i) anatomic structural and fiber architectonic data in one representation, (ii) a large-scale fiber orientation vector field, and (iii) a clustered version of the field. Alignment of a 3D-PLI dataset to an appropriate brain atlas provides expert-based delineation, segmentation, and, ultimately, visualization of selected anatomical structures. By means of these techniques, a detailed analysis of the complex fiber architecture in 3D is feasible
    • …
    corecore