653 research outputs found

    Few shot font generation via transferring similarity guided global style and quantization local style

    Full text link
    Automatic few-shot font generation (AFFG), aiming at generating new fonts with only a few glyph references, reduces the labor cost of manually designing fonts. However, the traditional AFFG paradigm of style-content disentanglement cannot capture the diverse local details of different fonts. So, many component-based approaches are proposed to tackle this problem. The issue with component-based approaches is that they usually require special pre-defined glyph components, e.g., strokes and radicals, which is infeasible for AFFG of different languages. In this paper, we present a novel font generation approach by aggregating styles from character similarity-guided global features and stylized component-level representations. We calculate the similarity scores of the target character and the referenced samples by measuring the distance along the corresponding channels from the content features, and assigning them as the weights for aggregating the global style features. To better capture the local styles, a cross-attention-based style transfer module is adopted to transfer the styles of reference glyphs to the components, where the components are self-learned discrete latent codes through vector quantization without manual definition. With these designs, our AFFG method could obtain a complete set of component-level style representations, and also control the global glyph characteristics. The experimental results reflect the effectiveness and generalization of the proposed method on different linguistic scripts, and also show its superiority when compared with other state-of-the-art methods. The source code can be found at https://github.com/awei669/VQ-Font.Comment: Accepted by ICCV 202

    Multi-Content GAN for Few-Shot Font Style Transfer

    Full text link
    In this work, we focus on the challenge of taking partial observations of highly-stylized text and generalizing the observations to generate unobserved glyphs in the ornamented typeface. To generate a set of multi-content images following a consistent style from very few examples, we propose an end-to-end stacked conditional GAN model considering content along channels and style along network layers. Our proposed network transfers the style of given glyphs to the contents of unseen ones, capturing highly stylized fonts found in the real-world such as those on movie posters or infographics. We seek to transfer both the typographic stylization (ex. serifs and ears) as well as the textual stylization (ex. color gradients and effects.) We base our experiments on our collected data set including 10,000 fonts with different styles and demonstrate effective generalization from a very small number of observed glyphs

    TET-GAN: Text Effects Transfer via Stylization and Destylization

    Full text link
    Text effects transfer technology automatically makes the text dramatically more impressive. However, previous style transfer methods either study the model for general style, which cannot handle the highly-structured text effects along the glyph, or require manual design of subtle matching criteria for text effects. In this paper, we focus on the use of the powerful representation abilities of deep neural features for text effects transfer. For this purpose, we propose a novel Texture Effects Transfer GAN (TET-GAN), which consists of a stylization subnetwork and a destylization subnetwork. The key idea is to train our network to accomplish both the objective of style transfer and style removal, so that it can learn to disentangle and recombine the content and style features of text effects images. To support the training of our network, we propose a new text effects dataset with as much as 64 professionally designed styles on 837 characters. We show that the disentangled feature representations enable us to transfer or remove all these styles on arbitrary glyphs using one network. Furthermore, the flexible network design empowers TET-GAN to efficiently extend to a new text style via one-shot learning where only one example is required. We demonstrate the superiority of the proposed method in generating high-quality stylized text over the state-of-the-art methods.Comment: Accepted by AAAI 2019. Code and dataset will be available at http://www.icst.pku.edu.cn/struct/Projects/TETGAN.htm

    Data Brushes: Interactive Style Transfer for Data Art

    Get PDF

    Font Representation Learning via Paired-glyph Matching

    Full text link
    Fonts can convey profound meanings of words in various forms of glyphs. Without typography knowledge, manually selecting an appropriate font or designing a new font is a tedious and painful task. To allow users to explore vast font styles and create new font styles, font retrieval and font style transfer methods have been proposed. These tasks increase the need for learning high-quality font representations. Therefore, we propose a novel font representation learning scheme to embed font styles into the latent space. For the discriminative representation of a font from others, we propose a paired-glyph matching-based font representation learning model that attracts the representations of glyphs in the same font to one another, but pushes away those of other fonts. Through evaluations on font retrieval with query glyphs on new fonts, we show our font representation learning scheme achieves better generalization performance than the existing font representation learning techniques. Finally on the downstream font style transfer and generation tasks, we confirm the benefits of transfer learning with the proposed method. The source code is available at https://github.com/junhocho/paired-glyph-matching.Comment: Accepted to BMVC202

    A Multi-Implicit Neural Representation for Fonts

    Get PDF
    Fonts are ubiquitous across documents and come in a variety of styles. They are either represented in a native vector format or rasterized to produce fixed resolution images. In the first case, the non-standard representation prevents benefiting from latest network architectures for neural representations; while, in the latter case, the rasterized representation, when encoded via networks, results in loss of data fidelity, as font-specific discontinuities like edges and corners are difficult to represent using neural networks. Based on the observation that complex fonts can be represented by a superposition of a set of simpler occupancy functions, we introduce \textit{multi-implicits} to represent fonts as a permutation-invariant set of learned implict functions, without losing features (e.g., edges and corners). However, while multi-implicits locally preserve font features, obtaining supervision in the form of ground truth multi-channel signals is a problem in itself. Instead, we propose how to train such a representation with only local supervision, while the proposed neural architecture directly finds globally consistent multi-implicits for font families. We extensively evaluate the proposed representation for various tasks including reconstruction, interpolation, and synthesis to demonstrate clear advantages with existing alternatives. Additionally, the representation naturally enables glyph completion, wherein a single characteristic font is used to synthesize a whole font family in the target style

    DiffUTE: Universal Text Editing Diffusion Model

    Full text link
    Diffusion model based language-guided image editing has achieved great success recently. However, existing state-of-the-art diffusion models struggle with rendering correct text and text style during generation. To tackle this problem, we propose a universal self-supervised text editing diffusion model (DiffUTE), which aims to replace or modify words in the source image with another one while maintaining its realistic appearance. Specifically, we build our model on a diffusion model and carefully modify the network structure to enable the model for drawing multilingual characters with the help of glyph and position information. Moreover, we design a self-supervised learning framework to leverage large amounts of web data to improve the representation ability of the model. Experimental results show that our method achieves an impressive performance and enables controllable editing on in-the-wild images with high fidelity. Our code will be avaliable in \url{https://github.com/chenhaoxing/DiffUTE}
    • …
    corecore