399 research outputs found

    3D Spatial Data Infrastructures for web-based Visualization

    Get PDF
    In this thesis, concepts for developing Spatial Data Infrastructures with an emphasis on visualizing 3D landscape and city models in distributed environments are discussed. Spatial Data Infrastructures are important for public authorities in order to perform tasks on a daily basis, and serve as research topic in geo-informatics. Joint initiatives at national and international level exist for harmonizing procedures and technologies. Interoperability is an important aspect in this context - as enabling technology for sharing, distributing, and connecting geospatial data and services. The Open Geospatial Consortium is the main driver for developing international standards in this sector and includes government agencies, universities and private companies in a consensus process. 3D city models are becoming increasingly popular not only in desktop Virtual Reality applications but also for being used in professional purposes by public authorities. Spatial Data Infrastructures focus so far on the storage and exchange of 3D building and elevation data. For efficient streaming and visualization of spatial 3D data in distributed network environments such as the internet, concepts from the area of real time 3D Computer Graphics must be applied and combined with Geographic Information Systems (GIS). For example, scene graph data structures are commonly used for creating complex and dynamic 3D environments for computer games and Virtual Reality applications, but have not been introduced in GIS so far. In this thesis, several aspects of how to create interoperable and service-based environments for 3D spatial data are addressed. These aspects are covered by publications in journals and conference proceedings. The introductory chapter provides a logic succession from geometrical operations for processing raw data, to data integration patterns, to system designs of single components, to service interface descriptions and workflows, and finally to an architecture of a complete distributed service network. Digital Elevation Models are very important in 3D geo-visualization systems. Data structures, methods and processes are described for making them available in service based infrastructures. A specific mesh reduction method is used for generating lower levels of detail from very large point data sets. An integration technique is presented that allows the combination with 2D GIS data such as roads and land use areas. This approach allows using another optimization technique that greatly improves the usability for immersive 3D applications such as pedestrian navigation: flattening road and water surfaces. It is a geometric operation, which uses data structures and algorithms found in numerical simulation software implementing Finite Element Methods. 3D Routing is presented as a typical application scenario for detailed 3D city models. Specific problems such as bridges, overpasses and multilevel networks are addressed and possible solutions described. The integration of routing capabilities in service infrastructures can be accomplished with standards of the Open Geospatial Consortium. An additional service is described for creating 3D networks and for generating 3D routes on the fly. Visualization of indoor routes requires different representation techniques. As server interface for providing access to all 3D data, the Web 3D Service has been used and further developed. Integrating and handling scene graph data is described in order to create rich virtual environments. Coordinate transformations of scene graphs are described in detail, which is an important aspect for ensuring interoperability between systems using different spatial reference systems. The Web 3D Service plays a central part in nearly all experiments that have been carried out. It does not only provide the means for interactive web-visualizations, but also for performing further analyses, accessing detailed feature information, and for automatic content discovery. OpenStreetMap and other worldwide available datasets are used for developing a complete architecture demonstrating the scalability of 3D Spatial Data Infrastructures. Its suitability for creating 3D city models is analyzed, according to requirements set by international standards. A full virtual globe system has been developed based on OpenStreetMap including data processing, database storage, web streaming and a visualization client. Results are discussed and compared to similar approaches within geo-informatics research, clarifying in which application scenarios and under which requirements the approaches in this thesis can be applied

    Methods for Real-time Visualization and Interaction with Landforms

    Get PDF
    This thesis presents methods to enrich data modeling and analysis in the geoscience domain with a particular focus on geomorphological applications. First, a short overview of the relevant characteristics of the used remote sensing data and basics of its processing and visualization are provided. Then, two new methods for the visualization of vector-based maps on digital elevation models (DEMs) are presented. The first method uses a texture-based approach that generates a texture from the input maps at runtime taking into account the current viewpoint. In contrast to that, the second method utilizes the stencil buffer to create a mask in image space that is then used to render the map on top of the DEM. A particular challenge in this context is posed by the view-dependent level-of-detail representation of the terrain geometry. After suitable visualization methods for vector-based maps have been investigated, two landform mapping tools for the interactive generation of such maps are presented. The user can carry out the mapping directly on the textured digital elevation model and thus benefit from the 3D visualization of the relief. Additionally, semi-automatic image segmentation techniques are applied in order to reduce the amount of user interaction required and thus make the mapping process more efficient and convenient. The challenge in the adaption of the methods lies in the transfer of the algorithms to the quadtree representation of the data and in the application of out-of-core and hierarchical methods to ensure interactive performance. Although high-resolution remote sensing data are often available today, their effective resolution at steep slopes is rather low due to the oblique acquisition angle. For this reason, remote sensing data are suitable to only a limited extent for visualization as well as landform mapping purposes. To provide an easy way to supply additional imagery, an algorithm for registering uncalibrated photos to a textured digital elevation model is presented. A particular challenge in registering the images is posed by large variations in the photos concerning resolution, lighting conditions, seasonal changes, etc. The registered photos can be used to increase the visual quality of the textured DEM, in particular at steep slopes. To this end, a method is presented that combines several georegistered photos to textures for the DEM. The difficulty in this compositing process is to create a consistent appearance and avoid visible seams between the photos. In addition to that, the photos also provide valuable means to improve landform mapping. To this end, an extension of the landform mapping methods is presented that allows the utilization of the registered photos during mapping. This way, a detailed and exact mapping becomes feasible even at steep slopes

    Practical line rasterization for multi-resolution textures

    Get PDF
    Draping 2D vectorial information over a 3D terrain elevation model is usually performed by real-time rendering to texture. In the case of linear feature representation, there are several specific problems using the texturing approach, specially when using multi-resolution textures. These problems are related to visual quality, aliasing artifacts and rendering performance. In this paper, we address the problems of 2D line rasterization on a multi-resolution texturing engine from a pragmatical point of view; some alternative solutions are presented, compared and evaluated. For each solution we have analyzed the visual quality, the impact on the rendering performance and the memory consumption. The study performed in this work is based on an OpenGL implementation of a clipmap-based multi-resolution texturing system, and is oriented towards the use of inexpensive consumer graphics hardware. 1

    Three-dimensional interactive maps: theory and practice

    Get PDF

    Scalable Realtime Rendering and Interaction with Digital Surface Models of Landscapes and Cities

    Get PDF
    Interactive, realistic rendering of landscapes and cities differs substantially from classical terrain rendering. Due to the sheer size and detail of the data which need to be processed, realtime rendering (i.e. more than 25 images per second) is only feasible with level of detail (LOD) models. Even the design and implementation of efficient, automatic LOD generation is ambitious for such out-of-core datasets considering the large number of scales that are covered in a single view and the necessity to maintain screen-space accuracy for realistic representation. Moreover, users want to interact with the model based on semantic information which needs to be linked to the LOD model. In this thesis I present LOD schemes for the efficient rendering of 2.5d digital surface models (DSMs) and 3d point-clouds, a method for the automatic derivation of city models from raw DSMs, and an approach allowing semantic interaction with complex LOD models. The hierarchical LOD model for digital surface models is based on a quadtree of precomputed, simplified triangle mesh approximations. The rendering of the proposed model is proved to allow real-time rendering of very large and complex models with pixel-accurate details. Moreover, the necessary preprocessing is scalable and fast. For 3d point clouds, I introduce an LOD scheme based on an octree of hybrid plane-polygon representations. For each LOD, the algorithm detects planar regions in an adequately subsampled point cloud and models them as textured rectangles. The rendering of the resulting hybrid model is an order of magnitude faster than comparable point-based LOD schemes. To automatically derive a city model from a DSM, I propose a constrained mesh simplification. Apart from the geometric distance between simplified and original model, it evaluates constraints based on detected planar structures and their mutual topological relations. The resulting models are much less complex than the original DSM but still represent the characteristic building structures faithfully. Finally, I present a method to combine semantic information with complex geometric models. My approach links the semantic entities to the geometric entities on-the-fly via coarser proxy geometries which carry the semantic information. Thus, semantic information can be layered on top of complex LOD models without an explicit attribution step. All findings are supported by experimental results which demonstrate the practical applicability and efficiency of the methods

    Archaeological 3D GIS

    Get PDF
    Archaeological 3D GIS provides archaeologists with a guide to explore and understand the unprecedented opportunities for collecting, visualising, and analysing archaeological datasets in three dimensions. With platforms allowing archaeologists to link, query, and analyse in a virtual, georeferenced space information collected by different specialists, the book highlights how it is possible to re-think aspects of theory and practice which relate to GIS. It explores which questions can be addressed in such a new environment and how they are going to impact the way we interpret the past. By using material from several international case studies such as Pompeii, Çatalhöyük, as well as prehistoric and protohistoric sites in Southern Scandinavia, this book discusses the use of the third dimension in support of archaeological practice. This book will be essential for researchers and scholars who focus on archaeology and spatial analysis, and is designed and structured to serve as a textbook for GIS and digital archaeology courses

    Wavelet-based multiresolution data representations for scalable distributed GIS services

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2002.Includes bibliographical references (p. 155-160).Demand for providing scalable distributed GIS services has been growing greatly as the Internet continues to boom. However, currently available data representations for these services are limited by a deficiency of scalability in data formats. In this research, four types of multiresolution data representations based on wavelet theories have been put forward. The designed Wavelet Image (WImg) data format helps us to achieve dynamic zooming and panning of compressed image maps in a prototype GIS viewer. The Wavelet Digital Elevation Model (WDEM) format is developed to deal with cell-based surface data. A WDEM is better than a raster pyramid in that a WDEM provides a non-redundant multiresolution representation. The Wavelet Arc (WArc) format is developed for decomposing curves into a multiresolution format through the lifting scheme. The Wavelet Triangulated Irregular Network (WTIN) format is developed to process general terrain surfaces based on the second generation wavelet theory. By designing a strategy to resample a terrain surface at subdivision points through the modified Butterfly scheme, we achieve the result: only one wavelet coefficient needs to be stored for each point in the final representation. In contrast to this result, three wavelet coefficients need to be stored for each point in a general 3D object wavelet-based representation. Our scheme is an interpolation scheme and has much better performance than the Hat wavelet filter on a surface. Boundary filters are designed to make the representation consistent with the rectangular boundary constraint.(cont.) We use a multi-linked list and a quadtree array as the data structures for computing. A method to convert a high resolution DEM to a WTIN is also provided. These four wavelet-based representations provide consistent and efficient multiresolution formats for online GIS. This makes scalable distributed GIS services more efficient and implementable.by Jingsong Wu.Ph.D

    Archaeological 3D GIS

    Get PDF
    Archaeological 3D GIS provides archaeologists with a guide to explore and understand the unprecedented opportunities for collecting, visualising, and analysing archaeological datasets in three dimensions. With platforms allowing archaeologists to link, query, and analyse in a virtual, georeferenced space information collected by different specialists, the book highlights how it is possible to re-think aspects of theory and practice which relate to GIS. It explores which questions can be addressed in such a new environment and how they are going to impact the way we interpret the past. By using material from several international case studies such as Pompeii, Çatalhöyük, as well as prehistoric and protohistoric sites in Southern Scandinavia, this book discusses the use of the third dimension in support of archaeological practice. This book will be essential for researchers and scholars who focus on archaeology and spatial analysis, and is designed and structured to serve as a textbook for GIS and digital archaeology courses
    • …
    corecore