21,349 research outputs found

    Strong convergence rates of probabilistic integrators for ordinary differential equations

    Get PDF
    Probabilistic integration of a continuous dynamical system is a way of systematically introducing model error, at scales no larger than errors introduced by standard numerical discretisation, in order to enable thorough exploration of possible responses of the system to inputs. It is thus a potentially useful approach in a number of applications such as forward uncertainty quantification, inverse problems, and data assimilation. We extend the convergence analysis of probabilistic integrators for deterministic ordinary differential equations, as proposed by Conrad et al.\ (\textit{Stat.\ Comput.}, 2017), to establish mean-square convergence in the uniform norm on discrete- or continuous-time solutions under relaxed regularity assumptions on the driving vector fields and their induced flows. Specifically, we show that randomised high-order integrators for globally Lipschitz flows and randomised Euler integrators for dissipative vector fields with polynomially-bounded local Lipschitz constants all have the same mean-square convergence rate as their deterministic counterparts, provided that the variance of the integration noise is not of higher order than the corresponding deterministic integrator. These and similar results are proven for probabilistic integrators where the random perturbations may be state-dependent, non-Gaussian, or non-centred random variables.Comment: 25 page

    The physics of symplectic integrators: perihelion advances and symplectic corrector algorithms

    Get PDF
    Symplectic integrators evolve dynamical systems according to modified Hamiltonians whose error terms are also well-defined Hamiltonians. The error of the algorithm is the sum of each error Hamiltonian's perturbation on the exact solution. When symplectic integrators are applied to the Kepler problem, these error terms cause the orbit to precess. In this work, by developing a general method of computing the perihelion advance via the Laplace-Runge-Lenz vector even for non-separable Hamiltonians, I show that the precession error in symplectic integrators can be computed analytically. It is found that at each order, each paired error Hamiltonians cause the orbit to precess oppositely by exactly the same amount after each period. Hence, symplectic corrector, or process integrators, which have equal coefficients for these paired error terms, will have their precession errors exactly cancel after each period. Thus the physics of symplectic integrators determines the optimal algorithm for integrating long time periodic motions.Comment: 18 pages, 5 figures, 1 tabl

    Algebraic structure of stochastic expansions and efficient simulation

    Full text link
    We investigate the algebraic structure underlying the stochastic Taylor solution expansion for stochastic differential systems.Our motivation is to construct efficient integrators. These are approximations that generate strong numerical integration schemes that are more accurate than the corresponding stochastic Taylor approximation, independent of the governing vector fields and to all orders. The sinhlog integrator introduced by Malham & Wiese (2009) is one example. Herein we: show that the natural context to study stochastic integrators and their properties is the convolution shuffle algebra of endomorphisms; establish a new whole class of efficient integrators; and then prove that, within this class, the sinhlog integrator generates the optimal efficient stochastic integrator at all orders.Comment: 19 page

    Collective symplectic integrators

    Full text link
    We construct symplectic integrators for Lie-Poisson systems. The integrators are standard symplectic (partitioned) Runge--Kutta methods. Their phase space is a symplectic vector space with a Hamiltonian action with momentum map JJ whose range is the target Lie--Poisson manifold, and their Hamiltonian is collective, that is, it is the target Hamiltonian pulled back by JJ. The method yields, for example, a symplectic midpoint rule expressed in 4 variables for arbitrary Hamiltonians on so(3)∗\mathfrak{so}(3)^*. The method specializes in the case that a sufficiently large symmetry group acts on the fibres of JJ, and generalizes to the case that the vector space carries a bifoliation. Examples involving many classical groups are presented

    A study of accuracy in selected numerical-analysis integration techniques

    Get PDF
    Report discusses several methods of performing numerical integration with computer. When data can be expressed as state vector that is dependent variable in a differential equation, self-starting integrators can be used to predict future data

    Design of quasi-symplectic propagators for Langevin dynamics

    Full text link
    A vector field splitting approach is discussed for the systematic derivation of numerical propagators for deterministic dynamics. Based on the formalism, a class of numerical integrators for Langevin dynamics are presented for single and multiple timestep algorithms

    Convergence analysis of domain decomposition based time integrators for degenerate parabolic equations

    Full text link
    Domain decomposition based time integrators allow the usage of parallel and distributed hardware, making them well-suited for the temporal discretization of parabolic systems, in general, and degenerate parabolic problems, in particular. The latter is due to the degenerate equations' finite speed of propagation. In this study, a rigours convergence analysis is given for such integrators without assuming any restrictive regularity on the solutions or the domains. The analysis is conducted by first deriving a new variational framework for the domain decomposition, which is applicable to the two standard degenerate examples. That is, the pp-Laplace and the porous medium type vector fields. Secondly, the decomposed vector fields are restricted to the underlying pivot space and the time integration of the parabolic problem can then be interpreted as an operators splitting applied to a dissipative evolution equation. The convergence results then follow by employing elements of the approximation theory for nonlinear semigroups
    • …
    corecore