6 research outputs found

    A novel statistical cerebrovascular segmentation algorithm with particle swarm optimization

    Get PDF
    AbstractWe present an automatic statistical intensity-based approach to extract the 3D cerebrovascular structure from time-of flight (TOF) magnetic resonance angiography (MRA) data. We use the finite mixture model (FMM) to fit the intensity histogram of the brain image sequence, where the cerebral vascular structure is modeled by a Gaussian distribution function and the other low intensity tissues are modeled by Gaussian and Rayleigh distribution functions. To estimate the parameters of the FMM, we propose an improved particle swarm optimization (PSO) algorithm, which has a disturbing term in speeding updating the formula of PSO to ensure its convergence. We also use the ring shape topology of the particles neighborhood to improve the performance of the algorithm. Computational results on 34 test data show that the proposed method provides accurate segmentation, especially for those blood vessels of small sizes

    Vascular Modeling from Volumetric Diagnostic Data: A Review

    Get PDF
    Reconstruction of vascular trees from digital diagnostic images is a challenging task in the development of tools for simulation and procedural planning for clinical use. Improvements in quality and resolution of acquisition modalities are constantly increasing the fields of application of computer assisted techniques for vascular modeling and a lot of Computer Vision and Computer Graphics research groups are currently active in the field, developing methodologies, algorithms and software prototypes able to recover models of branches of human vascular system from different kinds of input images. Reconstruction methods can be extremely different according to image type, accuracy requirements and level of automation. Some technologies have been validated and are available on medical workstation, others have still to be validated in clinical environments. It is difficult, therefore, to give a complete overview of the different approach used and results obtained, this paper just presents a short review including some examples of the principal reconstruction approaches proposed for vascular reconstruction, showing also the contribution given to the field by the Medical Application Area of CRS4, where methods to recover vascular models have been implemented and used for blood flow analysis, quantitative diagnosis and surgical planning tools based on Virtual Reality

    Vascular segmentation of phase contrast magnetic resonance angiograms based on statistical mixture modeling and local phase coherence.

    No full text
    In this paper, we present an approach to segmenting the brain vasculature in phase contrast magnetic resonance angiography (PC-MRA). According to our prior work, we can describe the overall probability density function of a PC-MRA speed image as either a Maxwell-uniform (MU) or Maxwell-Gaussian-uniform (MGU) mixture model. An automatic mechanism based on Kullback-Leibler divergence is proposed for selecting between the MGU and MU models given a speed image volume. A coherence measure, namely local phase coherence (LPC), which incorporates information about the spatial relationships between neighboring flow vectors, is defined and shown to be more robust to noise than previously described coherence measures. A statistical measure from the speed images and the LPC measure from the phase images are combined in a probabilistic framework, based on the maximum a posteriori method and Markov random fields, to estimate the posterior probabilities of vessel and background for classification. It is shown that segmentation based on both measures gives a more accurate segmentation than using either speed or flow coherence information alone. The proposed method is tested on synthetic, flow phantom and clinical datasets. The results show that the method can segment normal vessels and vascular regions with relatively low flow rate and low signal-to-noise ratio, e.g., aneurysms and veins

    Vascular segmentation of phase contrast magnetic resonance angiograms based on statistical mixture modeling and local phase coherence

    No full text
    In this paper, we present an approach to segmenting the brain vasculature in phase contrast magnetic resonance angiography (PC-MRA). According to our prior work, we can describe the overall probability density function of a PC-MRA speed image as either a Maxwell-uniform (MU) or Maxwell-Gaussian-uniform (MGU) mixture model. An automatic mechanism based on Kullback-Leibler divergence is proposed for selecting between the MGU and MU models given a speed image volume. A coherence measure, namely local phase coherence (LPC), which incorporates information about the spatial relationships between neighboring flow vectors, is defined and shown to be more robust to noise than previously described coherence measures. A statistical measure from the speed images and the LPC measure from the phase images are combined in a probabilistic framework, based on the maximum a posteriori method and Markov random fields, to estimate the posterior probabilities of vessel and background for classification. It is shown that segmentation based on both measures gives a more accurate segmentation than using either speed or How coherence information alone. The proposed method is tested on synthetic, flow phantom and clinical datasets. The results show that the method can segment normal vessels and vascular regions with relatively low flow rate and low signal-to-noise ratio, e.g., aneurysms and veins

    Segmentation of Human Muscles of Mastication from Magnetic Resonance Images

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore