98 research outputs found

    Almost structural completeness; an algebraic approach

    Full text link
    A deductive system is structurally complete if its admissible inference rules are derivable. For several important systems, like modal logic S5, failure of structural completeness is caused only by the underivability of passive rules, i.e. rules that can not be applied to theorems of the system. Neglecting passive rules leads to the notion of almost structural completeness, that means, derivablity of admissible non-passive rules. Almost structural completeness for quasivarieties and varieties of general algebras is investigated here by purely algebraic means. The results apply to all algebraizable deductive systems. Firstly, various characterizations of almost structurally complete quasivarieties are presented. Two of them are general: expressed with finitely presented algebras, and with subdirectly irreducible algebras. One is restricted to quasivarieties with finite model property and equationally definable principal relative congruences, where the condition is verifiable on finite subdirectly irreducible algebras. Secondly, examples of almost structurally complete varieties are provided Particular emphasis is put on varieties of closure algebras, that are known to constitute adequate semantics for normal extensions of S4 modal logic. A certain infinite family of such almost structurally complete, but not structurally complete, varieties is constructed. Every variety from this family has a finitely presented unifiable algebra which does not embed into any free algebra for this variety. Hence unification in it is not unitary. This shows that almost structural completeness is strictly weaker than projective unification for varieties of closure algebras

    One-Variable Fragments of First-Order Many-Valued Logics

    Get PDF
    In this thesis we study one-variable fragments of first-order logics. Such a one-variable fragment consists of those first-order formulas that contain only unary predicates and a single variable. These fragments can be viewed from a modal perspective by replacing the universal and existential quantifier with a box and diamond modality, respectively, and the unary predicates with corresponding propositional variables. Under this correspondence, the one-variable fragment of first-order classical logic famously corresponds to the modal logic S5. This thesis explores some such correspondences between first-order and modal logics. Firstly, we study first-order intuitionistic logics based on linear intuitionistic Kripke frames. We show that their one-variable fragments correspond to particular modal Gödel logics, defined over many-valued S5-Kripke frames. For a large class of these logics, we prove the validity problem to be decidable, even co-NP-complete. Secondly, we investigate the one-variable fragment of first-order Abelian logic, i.e., the first-order logic based on the ordered additive group of the reals. We provide two completeness results with respect to Hilbert-style axiomatizations: one for the one-variable fragment, and one for the one-variable fragment that does not contain any lattice connectives. Both these fragments are proved to be decidable. Finally, we launch a much broader algebraic investigation into one-variable fragments. We turn to the setting of first-order substructural logics (with the rule of exchange). Inspired by work on, among others, monadic Boolean algebras and monadic Heyting algebras, we define monadic commutative pointed residuated lattices as a first (algebraic) investigation into one-variable fragments of this large class of first-order logics. We prove a number of properties for these newly defined algebras, including a characterization in terms of relatively complete subalgebras as well as a characterization of their congruences

    Probabilistic epistemic updates on algebras

    Get PDF
    The present article contributes to the development of the mathematical theory of epistemic updates using the tools of duality theory. Here, we focus on Probabilistic Dynamic Epistemic Logic (PDEL). We dually characterize the product update construction of PDEL-models as a certain construction transforming the complex algebras associated with the given model into the complex algebra associated with the updated model. Thanks to this construction, an interpretation of the language of PDEL can be defined on algebraic models based on Heyting algebras. This justifies our proposal for the axiomatization of the intuitionistic counterpart of PDEL

    Quantum monadic algebras

    Full text link
    We introduce quantum monadic and quantum cylindric algebras. These are adaptations to the quantum setting of the monadic algebras of Halmos, and cylindric algebras of Henkin, Monk and Tarski, that are used in algebraic treatments of classical and intuitionistic predicate logic. Primary examples in the quantum setting come from von Neumann algebras and subfactors. Here we develop the basic properties of these quantum monadic and cylindric algebras and relate them to quantum predicate logic

    Zero-one laws with respect to models of provability logic and two Grzegorczyk logics

    Get PDF
    It has been shown in the late 1960s that each formula of first-order logic without constants and function symbols obeys a zero-one law: As the number of elements of finite models increases, every formula holds either in almost all or in almost no models of that size. Therefore, many properties of models, such as having an even number of elements, cannot be expressed in the language of first-order logic. Halpern and Kapron proved zero-one laws for classes of models corresponding to the modal logics K, T, S4, and S5 and for frames corresponding to S4 and S5. In this paper, we prove zero-one laws for provability logic and its two siblings Grzegorczyk logic and weak Grzegorczyk logic, with respect to model validity. Moreover, we axiomatize validity in almost all relevant finite models, leading to three different axiom systems
    • …
    corecore