25 research outputs found

    A Reduced Complexity Ungerboeck Receiver for Quantized Wideband Massive SC-MIMO

    Full text link
    Employing low resolution analog-to-digital converters in massive multiple-input multiple-output (MIMO) has many advantages in terms of total power consumption, cost and feasibility of such systems. However, such advantages come together with significant challenges in channel estimation and data detection due to the severe quantization noise present. In this study, we propose a novel iterative receiver for quantized uplink single carrier MIMO (SC-MIMO) utilizing an efficient message passing algorithm based on the Bussgang decomposition and Ungerboeck factorization, which avoids the use of a complex whitening filter. A reduced state sequence estimator with bidirectional decision feedback is also derived, achieving remarkable complexity reduction compared to the existing receivers for quantized SC-MIMO in the literature, without any requirement on the sparsity of the transmission channel. Moreover, the linear minimum mean-square-error (LMMSE) channel estimator for SC-MIMO under frequency-selective channel, which do not require any cyclic-prefix overhead, is also derived. We observe that the proposed receiver has significant performance gains with respect to the existing receivers in the literature under imperfect channel state information.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Multi-dimensional Channel Parameter Estimation for mmWave Cylindrical Arrays

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Millimeter-wave (mmWave) large-scale antenna arrays, standardized for the fifth-generation (5G) communication networks, have the potential to estimate channel parameters with unprecedented accuracy, due to their high temporal resolution and excellent directivity. However, most existing techniques have very high complexities in hardware and software, and they cannot effectively exploit the properties of mmWave large-array systems for channel estimation. As a result, their application in 5G mmWave large array systems is limited in practice. This thesis develops new and efficient solutions to channel parameter estimation using large-scale mmWave uniform cylindrical arrays (UCyAs). The key contributions of this thesis are on the following four aspects: We first present a channel compression-based channel estimation method, which reduces the computational complexity substantially at a negligible cost of estimation accuracy. By capitalizing on the sparsity of mmWave channel, the method effectively filters out the useless signal components. As a result, the dimension of the element space of the received signals can be reduced. Next, we extend the channel estimation to the hybrid UCyA case, and design new hybrid beamformers. By exploiting the convergence property of the Bessel function, the designed beamformers can preserve the recurrence relationship of the received signals with a small number of radio frequency (RF) chains. We then arrange the received signals in a tensor form and propose a new tensor-based channel estimation algorithm. By suppressing the receiver noises in all dimensions (time, frequency, and space), the algorithm can achieve substantially higher estimation accuracy than existing matrix-based techniques. Finally, to reduce cost and power consumption while maintaining a high network access capability, we develop a novel nested hybrid UCyA and present the corresponding parameter estimation algorithm based on the second-order channel statistics. Simulation results show that by exploiting the sparse array technique to design the RF chain connection network, the angles of a large number of devices can be accurately estimated with much fewer RF chains than antennas. Overall, this thesis presents several applicable UCyA design schemes and proposes the efficient channel parameter estimation algorithms. The presented new UCyAs can significantly reduce the hardware cost of the system with a marginal accuracy loss, and the proposed algorithms are capable of accurately estimating the channel parameters with low computational complexities. By employing the presented UCyAs and implementing the proposed novel algorithms cohesively, the different communication and deployment requirements of a variety of mmWave communication scenarios can be met

    Gradient Pursuit-Based Channel Estimation for MmWave Massive MIMO Systems with One-Bit ADCs

    Full text link
    In this paper, channel estimation for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems with one-bit analog-to-digital converters (ADCs) is considered. In the mmWave band, the number of propagation paths is small, which results in sparse virtual channels. To estimate sparse virtual channels based on the maximum a posteriori (MAP) criterion, sparsity-constrained optimization comes into play. In general, optimizing objective functions with sparsity constraints is NP-hard because of their combinatorial complexity. Furthermore, the coarse quantization of one-bit ADCs makes channel estimation a challenging task. In the field of compressed sensing (CS), the gradient support pursuit (GraSP) and gradient hard thresholding pursuit (GraHTP) algorithms were proposed to approximately solve sparsity-constrained optimization problems iteratively by pursuing the gradient of the objective function via hard thresholding. The accuracy guarantee of these algorithms, however, breaks down when the objective function is ill-conditioned, which frequently occurs in the mmWave band. To prevent the breakdown of gradient pursuit-based algorithms, the band maximum selecting (BMS) technique, which is a hard thresholder selecting only the "band maxima," is applied to GraSP and GraHTP to propose the BMSGraSP and BMSGraHTP algorithms in this paper.Comment: to appear in PIMRC 2019, Istanbul, Turke

    Bayesian Beamforming for Mobile Millimeter Wave Channel Tracking in the Presence of DOA Uncertainty

    Get PDF
    This paper proposes a Bayesian approach for angle-based hybrid beamforming and tracking that is robust to uncertain or erroneous direction-of-arrival (DOA) estimation in millimeter wave (mmWave) multiple input multiple output (MIMO) systems. Because the resolution of the phase shifters is finite and typically adjustable through a digital control, the DOA can be modeled as a discrete random variable with a prior distribution defined over a discrete set of candidate DOAs, and the variance of this distribution can be introduced to describe the level of uncertainty. The estimation problem of DOA is thereby formulated as a weighted sum of previously observed DOA values, where the weights are chosen according to a posteriori probability density function (pdf) of the DOA. To alleviate the computational complexity and cost, we present a motion trajectory-constrained a priori probability approximation method. It suggests that within a specific spatial region, a directional estimate can be close to true DOA with a high probability and sufficient to ensure trustworthiness. We show that the proposed approach has the advantage of robustness to uncertain DOA, and the beam tracking problem can be solved by incorporating the Bayesian approach with an expectation-maximization (EM) algorithm. Simulation results validate the theoretical analysis and demonstrate that the proposed solution outperforms a number of state-of-the-art benchmarks.This work was in part supported by the State Key Laboratory of Rail Traffic Control and Safety (Contract No. RCS2020ZT012), Beijing Jiaotong University and China Railway Corporation (Contract No. N2019G028). This article was presented in part at the 2019 IEEE GLOBECOM’19. The associate editor coordinating the review of this article and approving it for publication was O. Oyman. (Corresponding author: Yan Yang.) Yan Yang is with the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, Chin

    Near-Field Sparse Channel Representation and Estimation in 6G Wireless Communications

    Full text link
    The employment of extremely large antenna arrays and high-frequency signaling makes future 6G wireless communications likely to operate in the near-field region. In this case, the spherical wave assumption which takes into account both the user angle and distance is more accurate than the conventional planar one that is only related to the user angle. Therefore, the conventional planar wave based far-field channel model as well as its associated estimation algorithms needs to be reconsidered. Here we first propose a distance-parameterized angular-domain sparse model to represent the near-field channel. In this model, the user distance is included in the dictionary as an unknown parameter, so that the number of dictionary columns depends only on the angular space division. This is different from the existing polar-domain near-field channel model where the dictionary is constructed on an angle-distance two-dimensional (2D) space. Next, based on this model, joint dictionary learning and sparse recovery based channel estimation methods are proposed for both line of sight (LoS) and multi-path settings. To further demonstrate the effectiveness of the suggested algorithms, recovery conditions and computational complexity are studied. Our analysis shows that with the decrease of distance estimation error in the dictionary, the angular-domain sparse vector can be exactly recovered after a few iterations. The high storage burden and dictionary coherence issues that arise in the polar-domain 2D representation are well addressed. Finally, simulations in multi-user communication scenarios support the superiority of the proposed near-field channel sparse representation and estimation over the existing polar-domain method in channel estimation error

    Power Efficient Scheduling and Hybrid Precoding for Time Modulated Arrays

    Get PDF
    [Abstract] We consider power efficient scheduling and precoding solutions for multiantenna hybrid digital-analog transmission systems that use Time-Modulated Arrays (TMAs) in the analog domain. TMAs perform beamforming with switches instead of conventional Phase Shifters (PSs). The extremely low insertion losses of switches, together with their reduced power consumption and cost make TMAs attractive in emerging technologies like massive Multiple-Input Multiple-Output (MIMO) and millimeter wave (mmWave) systems. We propose a novel analog processing network based on TMAs and provide an angular scheduling algorithm that overcomes the limitations of conventional approaches. Next, we pose a convex optimization problem to determine the analog precoder. This formulation allows us to account for the Sideband Radiation (SR) effect inherent to TMAs, and achieve remarkable power efficiencies with a very low impact on performance. Computer experiments results show that the proposed design, while presenting a significantly better power efficiency, achieves a throughput similar to that obtained with other strategies based on angular selection for conventional architectures.Agencia Estatal de Investigación de España; TEC2016-75067-C4-1-RAgencia Estatal de Investigación de España; RED2018-102668-TXunta de Galicia; ED431G2019/0
    corecore