335 research outputs found

    Pronunciation variation modelling using accent features

    Get PDF

    Variation Modeling of Lean Manufacturing Performance Using Fuzzy Logic Based Quantitative Lean Index

    Get PDF
    The lean index is the sum of weighted scores of performance variables that describe the lean manufacturing characteristics of a system. Various quantitative lean index models have been advanced for assessing lean manufacturing performance. These models are represented by deterministic variables and do not consider variation in manufacturing systems. In this article variation is modeled in a quantitative fuzzy logic based lean index and compared with traditional deterministic modeling. By simulating the lean index model for a manufacturing case it is found that the latter tend to under or overestimate performance and the former provides a more robust lean assessment

    Constructional schemas in variation : modelling contrastive negation

    Get PDF
    This paper discusses constructional variation in the domain of contrastive negation in English, using data from the British National Corpus. Contrastive negation refers to constructs with two parts, one negative and the other affirmative, such that the affirmative offers an alternative to the negative in the frame in question (e.g. shaken, not stirred; not once but twice; I don't like it - I love it). The paper utilises multiple correspondence analysis to explore the degree of synonymy among the various constructional schemas of contrastive negation, finding that different schemas are associated with different semantic, pragmatic and extralinguistic contexts but also that certain schemas do not differ from each other in a significant way.Peer reviewe

    Automatic vehicle tracking and recognition from aerial image sequences

    Full text link
    This paper addresses the problem of automated vehicle tracking and recognition from aerial image sequences. Motivated by its successes in the existing literature focus on the use of linear appearance subspaces to describe multi-view object appearance and highlight the challenges involved in their application as a part of a practical system. A working solution which includes steps for data extraction and normalization is described. In experiments on real-world data the proposed methodology achieved promising results with a high correct recognition rate and few, meaningful errors (type II errors whereby genuinely similar targets are sometimes being confused with one another). Directions for future research and possible improvements of the proposed method are discussed

    Modelling Local Deep Convolutional Neural Network Features to Improve Fine-Grained Image Classification

    Get PDF
    We propose a local modelling approach using deep convolutional neural networks (CNNs) for fine-grained image classification. Recently, deep CNNs trained from large datasets have considerably improved the performance of object recognition. However, to date there has been limited work using these deep CNNs as local feature extractors. This partly stems from CNNs having internal representations which are high dimensional, thereby making such representations difficult to model using stochastic models. To overcome this issue, we propose to reduce the dimensionality of one of the internal fully connected layers, in conjunction with layer-restricted retraining to avoid retraining the entire network. The distribution of low-dimensional features obtained from the modified layer is then modelled using a Gaussian mixture model. Comparative experiments show that considerable performance improvements can be achieved on the challenging Fish and UEC FOOD-100 datasets.Comment: 5 pages, three figure

    The new accent technologies:recognition, measurement and manipulation of accented speech

    Get PDF

    Solar gravitational energy and luminosity variations

    Full text link
    Due to non-homogeneous mass distribution and non-uniform velocity rate inside the Sun, the solar outer shape is distorted in latitude. In this paper, we analyze the consequences of a temporal change in this figure on the luminosity. To do so, we use the Total Solar Irradiance (TSI) as an indicator of luminosity. Considering that most of the authors have explained the largest part of the TSI modulation with magnetic network (spots and faculae) but not the whole, we could set constraints on radius and effective temperature variations (dR, dT). However computations show that the amplitude of solar irradiance modulation is very sensitive to photospheric temperature variations. In order to understand discrepancies between our best fit and recent observations of Livingston et al. (2005), showing no effective surface temperature variation during the solar cycle, we investigated small effective temperature variation in irradiance modeling. We emphasized a phase-shift (correlated or anticorrelated radius and irradiance variations) in the (dR, dT)-parameter plane. We further obtained an upper limit on the amplitude of cyclic solar radius variations, deduced from the gravitational energy variations. Our estimate is consistent with both observations of the helioseismic radius through the analysis of f-mode frequencies and observations of the basal photospheric temperature at Kitt Peak. Finally, we suggest a mechanism to explain faint changes in the solar shape due to variation of magnetic pressure which modifies the granules size. This mechanism is supported by our estimate of the asphericity-luminosity parameter, which implies an effectiveness of convective heat transfer only in very outer layers of the Sun.Comment: 17 pages, 2 figure, 1 table, published in New Astronom

    NMR investigations of the interaction between the azo-dye sunset yellow and Fluorophenol

    Get PDF
    The interaction of small molecules with larger noncovalent assemblies is important across a wide range of disciplines. Here, we apply two complementary NMR spectroscopic methods to investigate the interaction of various fluorophenol isomers with sunset yellow. This latter molecule is known to form noncovalent aggregates in isotropic solution, and form liquid crystals at high concentrations. We utilize the unique fluorine-19 nucleus of the fluorophenol as a reporter of the interactions via changes in both the observed chemical shift and diffusion coefficients. The data are interpreted in terms of the indefinite self-association model and simple modifications for the incorporation of a second species into an assembly. A change in association mode is tentatively assigned whereby the fluorophenol binds end-on with the sunset yellow aggregates at low concentration and inserts into the stacks at higher concentrations
    corecore