52 research outputs found

    A Fine-Scale Understanding of Sagebrush Islands to Improve Restoration Outcomes in the Intermountain West

    Get PDF
    In the Intermountain West, rapid expansion of non-native grasses, primarily cheatgrass, has created a repeating cycle where cheatgrass easily ignites and after a fire, more cheatgrass establishes in the burned area, leading to more fire, and more cheatgrass. The primary method to prevent further fires is to plant grass and shrub seeds after a fire because they can deter cheatgrass from establishing and reduce the chance of fire. However, this approach does not always work. There is a need and interest in alternative ways to establish native grasses and forbs. Sagebrush, the dominant shrub of lower-elevation regions of the Intermountain West, may act as a nurse plant: a plant that alters the environment around itself in a way that is beneficial to other plants. Capitalizing on the attributes that make sagebrush nurse plants, like shade and higher soil moisture, may help the establishment of grasses and forbs before a fire occurs, increasing the likelihood that cheatgrass will not dominate that system. While the area around nurse plants generally is thought of as a favorable place for grasses and forbs to grow, that may not always be the case. There may be minimal differences in the microenvironment between the canopy and interspace and there can be competition under the canopy between newly established plants and other vegetation that is already present. I found that the sagebrush canopy influenced the survival of two native wildflower species, Munro’s globemallow and common yarrow, when they were transplanted as seedlings, but survival of two native transplanted grass species, bluebunch wheatgrass and squirreltail, was unaffected by the sagebrush canopy. However, when those same grasses were planted as seeds, if the seeds emerged, their emergence was highest near the canopy. Some of the attributes that make the canopy a “good” place for grasses and wildflowers to grow extend into the interspace, making the interspace potentially similarly “good.” I found that bluebunch wheatgrass and globemallow were shade tolerant and grew in ways that may allow them to be competitive under the canopy and persist in the interspaces, outside of what is generally considered a “good” nurse shrub microenvironment

    Restoring North America’s Sagebrush Steppe Ecosystem Using Seed Enhancement Technologies

    Get PDF
    Rangelands occupy over a third of global land area, and in many cases are in less than optimum condition as a result of past land use, catastrophic wildfire and other disturbance, invasive species, or climate change. Often the only means of restoring these lands involves seeding desirable species, yet there are few cost effective seeding technologies, especially for the more arid rangeland types. The inability to consistently establish desired plants from seed may indicate that the seeding technologies being used are not successful in addressing the primary sources of mortality in the progression from seed to established plant. Seed enhancement technologies allow for the physical manipulation and application of materials to the seed that can enhance germination, emergence, and/or early seedling growth. In this article we examine some of the major limiting factors impairing seedling establishment in North America’s native sagebrush steppe ecosystem, and demonstrate how seed enhancement technologies can be employed to overcome these restoration barriers. We discuss specific technologies for: (1) increasing soil water availability; (2) enhancing seedling emergence in crusting soil; (3) controlling the timing of seed germination; (4) improving plantability and emergence of small seeded species; (5) enhancing seed coverage of broadcasted seeds; and (6) improving selectivity of pre-emergent herbicide. Concepts and technologies in this paper for restoring the sagebrush steppe ecosystem may apply generally to semi-arid and arid rangelands around the globe

    Problem Analysis for the Vegetation Diversity Project

    Get PDF
    Management of the majority of public rangeland in the Great Basin and Columbia-Snake River Plateau falls under the authority of the Bureau of Land Management. The flora of this land ranges from highly diverse native plant communities to deteriorated lands dominated by exotic annuals. Approximately nine percent of the BLM’s 78 million acres of public land in this region is degraded to such a degree that changes in land management alone will not result in significant improvement. The BLM intends to restore native plant communities on these deteriorated lands, but current revegetation techniques used to establish introduced perennial grasses are often unsuccessful in establishing native plants. On lands where native communities exist, the BLM desires to maintain and to enhance native plant diversity. Encroachment of highly competitive exotic forbs and annual grasses in native plant communities raises concern among managers over the appropriate management to maintain native communities. Coupled with these concerns are impacts on vegetation of the documented increase in CO, and of predicted global climate change. The BLM therefore recognizes the need for research to understand and solve these problems and for the results of this research to be transferred to land managers. The Great Basin and Columbia Plateau region consists of two major ecosystems: the sagebrush ecosystem, generally located in the northern half of the region; and the salt-desert shrub ecosystem, located in the southern half. These ecosystems differ greatly in their composition of plant species and in their climatic and soil conditions. Therefore, techniques developed in one ecosystem may not be directly transferred to the other ecosystem. We propose to initially concentrate studies in the Wyoming big sagebrush communities of the sagebrush ecosystem, because: (1) these communities represent a large amount of the BLM lands in Oregon, Idaho, northeastern California, Nevada and Utah; and (2) the low precipitation within these communities limits the success of standard revegetation methods. Shadscale communities of the salt-desert shrub ecosystem were given the next priority for study. These communities are a major component in four of the five participating states. Since the shadscale communities differ greatly from sagebrush communities, studies of shadscale communities will be initiated when the project reaches full funding. Similar studies to those proposed here for sagebrush communities would be conducted on this new suite of species and environmental conditions. Low sagebrush communities would be given the lowest priority and are unlikely to be initiated. Plant associations in low sagebrush and Wyoming sagebrush communities are similar and thus promising techniques for the Wyoming sagebrush communities may work well in low sagebrush communities and may be attempted later in the project

    Use of Auto-Germ to Model Germination Timing in the Sagebrush-Steppe

    Get PDF
    Germination timing has a strong influence on direct seeding efforts, and therefore is a closely tracked demographic stage in a wide variety of wildland and agricultural settings. Predictive seed germination models, based on soil moisture and temperature data in the seed zone are an efficient method of estimating germination timing. We utilized Visual Basic for Applications (VBA) to create Auto‐Germ, which is an Excel workbook that allows a user to estimate field germination timing based on wet‐thermal accumulation models and field temperature and soil moisture data. To demonstrate the capabilities of Auto‐Germ, we calculated various germination indices and modeled germination timing for 11 different species, across 6 years, and 10 Artemisia‐steppe sites in the Great Basin of North America to identify the planting date required for 50% or more of the simulated population to germinate in spring (1 March or later), which is when conditions are predicted to be more conducive for plant establishment. Both between and within the species, germination models indicated that there was high temporal and spatial variability in the planting date required for spring germination to occur. However, some general trends were identified, with species falling roughly into three categories, where seeds could be planted on average in either fall (Artemisia tridentata ssp. wyomingensis and Leymus cinereus), early winter (Festuca idahoensis, Poa secunda, Elymus lanceolatus, Elymus elymoides, and Linum lewisii), or mid‐winter (Achillea millefolium, Elymus wawawaiensis, and Pseudoroegneria spicata) and still not run the risk of germination during winter. These predictions made through Auto‐Germ demonstrate that fall may not be an optimal time period for sowing seeds for most non‐dormant species if the desired goal is to have seeds germinate in spring

    Downy brome (Bromus tectorum) and Japanese brome (Bromus japonicus) biology, ecology, and management: literature review

    Get PDF
    Date inferred from file name.Includes bibliographical references

    Competition from Bromus tectorum removes differences between perennial grasses in N capture and conservation strategies

    Get PDF
    Background and aims Competition from the annual grass Bromus tectorum threatens aridland perennial bunchgrass communities. Unlike annuals, perennials must allocate part of their first year nitrogen (N) budget to storage rather than growth, potentially placing them at a competitive disadvantage. Methods We evaluated N acquisition and conservation for two perennial bunchgrasses, Agropyron desertorum and Pseudoroegneria spicata, at the seedling stage to investigate potential trade-offs between storage and growth when grown with and without B. tectorum under two levels of soil N. Results Agropyron desertorum had higher growth rates, N uptake, and N productivity than P. spicata when grown without B. tectorum, but trait values were similarly low for both species under competition. Without competition, N resorption was poor under high soil N, but it was equally proficient among species under competition. Conclusions A. desertorum had higher growth rates and N productivity than P. spicata without competition, suggesting these traits may in part promote its greater success in restoration programs. However, B. tectorum neighbors reduced its trait advantage. As plant traits become more integral to restoration ecology, understanding how N capture and conservation traits vary across candidate species and under competition may improve our ability to select species with the highest likelihood of establishing in arid, nutrient-limited systems

    Final Technical Report: Integrated Restoration Strategies Towards Weed Control on Western Rangelands

    Get PDF
    Invasive species are having severe ecological (Mack et al. 2000) and economic (Pimentel et al. 2005) impacts on ecosystems around the world. Invasive species can alter many ecosystem processes (Crooks 2002, Walker & Smith 1997) including: water and nutrient availability, such as form and amount of N if the soil (Evans et al. 2001, Sperry et al. 2006); primary productivity, through shifts in growth rates or efficiency of resource use; disturbance regimes, including the type, frequency, and severity of disturbances such as fire (D’Antonio 2002); and community dynamics, such as species replacements (Alvarez & Cushman 2002). The economic losses and damages by invasive plants are estimated to be ~34billionintheUSand 34 billion in the US and ~95 billion worldwide (Pimental et al. 2005). Although trade and human migrations are among the most important vectors for introducing invasive plants (Mack et al. 2000), similar consensus on the causal mechanism for invasiveness is lacking (Dietz & Edwards 2006). Many different hypotheses have been proposed to explain why species are invasive. Some hypotheses, such as the vacant niche hypothesis, are conceptually appealing but lack concrete evidence to support them (Mack et al. 2000). Others, such as the allelopathy hypothesis (Callaway & Aschehoug 2000, Bais et al. 2003), have strong evidence to support them for some specific cases, but are unlikely to be important for most plants. Understanding why a species is invasive is important because it provides insight into how to control the invasion. Because a causal mechanism that is universally applicable to all plants has not been identified to date, careful attention must be made to biological and ecological characteristics of the plants and communities of interest if control strategies are to be implemented
    • 

    corecore