2,467 research outputs found

    A Language and Hardware Independent Approach to Quantum-Classical Computing

    Full text link
    Heterogeneous high-performance computing (HPC) systems offer novel architectures which accelerate specific workloads through judicious use of specialized coprocessors. A promising architectural approach for future scientific computations is provided by heterogeneous HPC systems integrating quantum processing units (QPUs). To this end, we present XACC (eXtreme-scale ACCelerator) --- a programming model and software framework that enables quantum acceleration within standard or HPC software workflows. XACC follows a coprocessor machine model that is independent of the underlying quantum computing hardware, thereby enabling quantum programs to be defined and executed on a variety of QPUs types through a unified application programming interface. Moreover, XACC defines a polymorphic low-level intermediate representation, and an extensible compiler frontend that enables language independent quantum programming, thus promoting integration and interoperability across the quantum programming landscape. In this work we define the software architecture enabling our hardware and language independent approach, and demonstrate its usefulness across a range of quantum computing models through illustrative examples involving the compilation and execution of gate and annealing-based quantum programs

    Juice: An SVG Rendering Peer for Java Swing

    Get PDF
    SVG—a W3C XML standard—is a relatively new language for describing low-level vector drawings. Due to its cross-platform capabilities and support for events, SVG may potentially be used in interactive GUIs/graphical front-ends. However, a complete and full-featured widget set for SVG does not exist at the time of this writing. I have researched and implemented a framework which retargets a complete and mature raster- based widget library—the JFC Swing GUI library—into a vector-based display substrate: SVG. My framework provides SVG with a full-featured widget set, as well as augmenting Swing’s platform coverage. Furthermore, by using bytecode instrumentation techniques, my Swing to SVG bridging framework is transparent to the developers— allowing them to implement their user interfaces in pure Swing

    Chainspace: A Sharded Smart Contracts Platform

    Full text link
    Chainspace is a decentralized infrastructure, known as a distributed ledger, that supports user defined smart contracts and executes user-supplied transactions on their objects. The correct execution of smart contract transactions is verifiable by all. The system is scalable, by sharding state and the execution of transactions, and using S-BAC, a distributed commit protocol, to guarantee consistency. Chainspace is secure against subsets of nodes trying to compromise its integrity or availability properties through Byzantine Fault Tolerance (BFT), and extremely high-auditability, non-repudiation and `blockchain' techniques. Even when BFT fails, auditing mechanisms are in place to trace malicious participants. We present the design, rationale, and details of Chainspace; we argue through evaluating an implementation of the system about its scaling and other features; we illustrate a number of privacy-friendly smart contracts for smart metering, polling and banking and measure their performance
    • …
    corecore