74,919 research outputs found

    Inference with Constrained Hidden Markov Models in PRISM

    Full text link
    A Hidden Markov Model (HMM) is a common statistical model which is widely used for analysis of biological sequence data and other sequential phenomena. In the present paper we show how HMMs can be extended with side-constraints and present constraint solving techniques for efficient inference. Defining HMMs with side-constraints in Constraint Logic Programming have advantages in terms of more compact expression and pruning opportunities during inference. We present a PRISM-based framework for extending HMMs with side-constraints and show how well-known constraints such as cardinality and all different are integrated. We experimentally validate our approach on the biologically motivated problem of global pairwise alignment

    Numerical Integration and Dynamic Discretization in Heuristic Search Planning over Hybrid Domains

    Full text link
    In this paper we look into the problem of planning over hybrid domains, where change can be both discrete and instantaneous, or continuous over time. In addition, it is required that each state on the trajectory induced by the execution of plans complies with a given set of global constraints. We approach the computation of plans for such domains as the problem of searching over a deterministic state model. In this model, some of the successor states are obtained by solving numerically the so-called initial value problem over a set of ordinary differential equations (ODE) given by the current plan prefix. These equations hold over time intervals whose duration is determined dynamically, according to whether zero crossing events take place for a set of invariant conditions. The resulting planner, FS+, incorporates these features together with effective heuristic guidance. FS+ does not impose any of the syntactic restrictions on process effects often found on the existing literature on Hybrid Planning. A key concept of our approach is that a clear separation is struck between planning and simulation time steps. The former is the time allowed to observe the evolution of a given dynamical system before committing to a future course of action, whilst the later is part of the model of the environment. FS+ is shown to be a robust planner over a diverse set of hybrid domains, taken from the existing literature on hybrid planning and systems.Comment: 17 page

    Syntactic Topic Models

    Full text link
    The syntactic topic model (STM) is a Bayesian nonparametric model of language that discovers latent distributions of words (topics) that are both semantically and syntactically coherent. The STM models dependency parsed corpora where sentences are grouped into documents. It assumes that each word is drawn from a latent topic chosen by combining document-level features and the local syntactic context. Each document has a distribution over latent topics, as in topic models, which provides the semantic consistency. Each element in the dependency parse tree also has a distribution over the topics of its children, as in latent-state syntax models, which provides the syntactic consistency. These distributions are convolved so that the topic of each word is likely under both its document and syntactic context. We derive a fast posterior inference algorithm based on variational methods. We report qualitative and quantitative studies on both synthetic data and hand-parsed documents. We show that the STM is a more predictive model of language than current models based only on syntax or only on topics

    Towards a Holistic CAD Platform for Nanotechnologies

    Get PDF
    Silicon-based CMOS technologies are predicted to reach their ultimate limits by the middle of the next decade. Research on nanotechnologies is actively conducted, in a world-wide effort to develop new technologies able to maintain the Moore's law. They promise revolutionizing the computing systems by integrating tremendous numbers of devices at low cost. These trends will have a profound impact on the architectures of computing systems and will require a new paradigm of CAD. The paper presents a work in progress on this direction. It is aimed at fitting requirements and constraints of nanotechnologies, in an effort to achieve efficient use of the huge computing power promised by them. To achieve this goal we are developing CAD tools able to exploit efficiently these huge computing capabilities promised by nanotechnologies in the domain of simulation of complex systems composed by huge numbers of relatively simple elements.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    An initiative in multidisciplinary optimization of rotorcraft

    Get PDF
    Described is a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The committee, which has been named IRASC (Integrated Rotorcraft Analysis Steering Committee), has defined two principal foci for the activity: a white paper which sets forth the goals and plans of the effort; and a rotor design project which will validate the basic constituents, as well as the overall design methodology for multidisciplinary optimization. The optimization formulation is described in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, some significant progress has been made, principally in the areas of single discipline optimization. Results are given which represent accomplishments in rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight
    corecore