1,267 research outputs found

    Reliable Inference from Unreliable Agents

    Get PDF
    Distributed inference using multiple sensors has been an active area of research since the emergence of wireless sensor networks (WSNs). Several researchers have addressed the design issues to ensure optimal inference performance in such networks. The central goal of this thesis is to analyze distributed inference systems with potentially unreliable components and design strategies to ensure reliable inference in such systems. The inference process can be that of detection or estimation or classification, and the components/agents in the system can be sensors and/or humans. The system components can be unreliable due to a variety of reasons: faulty sensors, security attacks causing sensors to send falsified information, or unskilled human workers sending imperfect information. This thesis first quantifies the effect of such unreliable agents on the inference performance of the network and then designs schemes that ensure a reliable overall inference. In the first part of this thesis, we study the case when only sensors are present in the system, referred to as sensor networks. For sensor networks, the presence of malicious sensors, referred to as Byzantines, are considered. Byzantines are sensors that inject false information into the system. In such systems, the effect of Byzantines on the overall inference performance is characterized in terms of the optimal attack strategies. Game-theoretic formulations are explored to analyze two-player interactions. Next, Byzantine mitigation schemes are designed that address the problem from the system\u27s perspective. These mitigation schemes are of two kinds: Byzantine identification schemes and Byzantine tolerant schemes. Using learning based techniques, Byzantine identification schemes are designed that learn the identity of Byzantines in the network and use this information to improve system performance. When such schemes are not possible, Byzantine tolerant schemes using error-correcting codes are developed that tolerate the effect of Byzantines and maintain good performance in the network. Error-correcting codes help in correcting the erroneous information from these Byzantines and thereby counter their attack. The second line of research in this thesis considers humans-only networks, referred to as human networks. A similar research strategy is adopted for human networks where, the effect of unskilled humans sharing beliefs with a central observer called \emph{CEO} is analyzed, and the loss in performance due to the presence of such unskilled humans is characterized. This problem falls under the family of problems in information theory literature referred to as the \emph{CEO Problem}, but for belief sharing. The asymptotic behavior of the minimum achievable mean squared error distortion at the CEO is studied in the limit when the number of agents LL and the sum rate RR tend to infinity. An intermediate regime of performance between the exponential behavior in discrete CEO problems and the 1/R1/R behavior in Gaussian CEO problems is established. This result can be summarized as the fact that sharing beliefs (uniform) is fundamentally easier in terms of convergence rate than sharing measurements (Gaussian), but sharing decisions is even easier (discrete). Besides theoretical analysis, experimental results are reported for experiments designed in collaboration with cognitive psychologists to understand the behavior of humans in the network. The act of fusing decisions from multiple agents is observed for humans and the behavior is statistically modeled using hierarchical Bayesian models. The implications of such modeling on the design of large human-machine systems is discussed. Furthermore, an error-correcting codes based scheme is proposed to improve system performance in the presence of unreliable humans in the inference process. For a crowdsourcing system consisting of unskilled human workers providing unreliable responses, the scheme helps in designing easy-to-perform tasks and also mitigates the effect of erroneous data. The benefits of using the proposed approach in comparison to the majority voting based approach are highlighted using simulated and real datasets. In the final part of the thesis, a human-machine inference framework is developed where humans and machines interact to perform complex tasks in a faster and more efficient manner. A mathematical framework is built to understand the benefits of human-machine collaboration. Such a study is extremely important for current scenarios where humans and machines are constantly interacting with each other to perform even the simplest of tasks. While machines perform best in some tasks, humans still give better results in tasks such as identifying new patterns. By using humans and machines together, one can extract complete information about a phenomenon of interest. Such an architecture, referred to as Human-Machine Inference Networks (HuMaINs), provides promising results for the two cases of human-machine collaboration: \emph{machine as a coach} and \emph{machine as a colleague}. For simple systems, we demonstrate tangible performance gains by such a collaboration which provides design modules for larger, and more complex human-machine systems. However, the details of such larger systems needs to be further explored

    Secure location-aware communications in energy-constrained wireless networks

    Get PDF
    Wireless ad hoc network has enabled a variety of exciting civilian, industrial and military applications over the past few years. Among the many types of wireless ad hoc networks, Wireless Sensor Networks (WSNs) has gained popularity because of the technology development for manufacturing low-cost, low-power, multi-functional motes. Compared with traditional wireless network, location-aware communication is a very common communication pattern and is required by many applications in WSNs. For instance, in the geographical routing protocol, a sensor needs to know its own and its neighbors\u27 locations to forward a packet properly to the next hop. The application-aware communications are vulnerable to many malicious attacks, ranging from passive eavesdropping to active spoofing, jamming, replaying, etc. Although research efforts have been devoted to secure communications in general, the properties of energy-constrained networks pose new technical challenges: First, the communicating nodes in the network are always unattended for long periods without physical maintenance, which makes their energy a premier resource. Second, the wireless devices usually have very limited hardware resources such as memory, computation capacity and communication range. Third, the number of nodes can be potentially of very high magnitude. Therefore, it is infeasible to utilize existing secure algorithms designed for conventional wireless networks, and innovative mechanisms should be designed in a way that can conserve power consumption, use inexpensive hardware and lightweight protocols, and accommodate with the scalability of the network. In this research, we aim at constructing a secure location-aware communication system for energy-constrained wireless network, and we take wireless sensor network as a concrete research scenario. Particularly, we identify three important problems as our research targets: (1) providing correct location estimations for sensors in presence of wormhole attacks and pollution attacks, (2) detecting location anomalies according to the application-specific requirements of the verification accuracy, and (3) preventing information leakage to eavesdroppers when using network coding for multicasting location information. Our contributions of the research are as follows: First, we propose two schemes to improve the availability and accuracy of location information of nodes. Then, we study monitoring and detection techniques and propose three lightweight schemes to detect location anomalies. Finally, we propose two network coding schemes which can effectively prevent information leakage to eavesdroppers. Simulation results demonstrate the effectiveness of our schemes in enhancing security of the system. Compared to previous works, our schemes are more lightweight in terms of hardware cost, computation overhead and communication consumptions, and thus are suitable for energy-constrained wireless networks

    On the Design and Analysis of Secure Inference Networks

    Get PDF
    Parallel-topology inference networks consist of spatially-distributed sensing agents that collect and transmit observations to a central node called the fusion center (FC), so that a global inference is made regarding the phenomenon-of-interest (PoI). In this dissertation, we address two types of statistical inference, namely binary-hypothesis testing and scalar parameter estimation in parallel-topology inference networks. We address three different types of security threats in parallel-topology inference networks, namely Eavesdropping (Data-Confidentiality), Byzantine (Data-Integrity) or Jamming (Data-Availability) attacks. In an attempt to alleviate information leakage to the eavesdropper, we present optimal/near-optimal binary quantizers under two different frameworks, namely differential secrecy where the difference in performances between the FC and Eve is maximized, and constrained secrecy where FC’s performance is maximized in the presence of tolerable secrecy constraints. We also propose near-optimal transmit diversity mechanisms at the sensing agents in detection networks in the presence of tolerable secrecy constraints. In the context of distributed inference networks with M-ary quantized sensing data, we propose a novel Byzantine attack model and find optimal attack strategies that minimize KL Divergence at the FC in the presence of both ideal and non-ideal channels. Furthermore, we also propose a novel deviation-based reputation scheme to detect Byzantine nodes in a distributed inference network. Finally, we investigate optimal jamming attacks in detection networks where the jammer distributes its power across the sensing and the communication channels. We also model the interaction between the jammer and a centralized detection network as a complete information zero-sum game. We find closed-form expressions for pure-strategy Nash equilibria and show that both the players converge to these equilibria in a repeated game. Finally, we show that the jammer finds no incentive to employ pure-strategy equilibria, and causes greater impact on the network performance by employing mixed strategies

    Trustworthiness Mechanisms for Long-Distance Networks in Internet of Things

    Get PDF
    Aquesta tesi té com a objectiu aconseguir un intercanvi de dades fiable en un entorn hostil millorant-ne la confiabilitat mitjançant el disseny d'un model complet que tingui en compte les diferents capes de confiabilitat i mitjançant la implementació de les contramesures associades al model. La tesi se centra en el cas d'ús del projecte SHETLAND-NET, amb l'objectiu de desplegar una arquitectura d'Internet de les coses (IoT) híbrida amb comunicacions LoRa i d'ona ionosfèrica d'incidència gairebé vertical (NVIS) per oferir un servei de telemetria per al monitoratge del “permafrost” a l'Antàrtida. Per complir els objectius de la tesi, en primer lloc, es fa una revisió de l'estat de l'art en confiabilitat per proposar una definició i l'abast del terme de confiança. Partint d'aquí, es dissenya un model de confiabilitat de quatre capes, on cada capa es caracteritza pel seu abast, mètrica per a la quantificació de la confiabilitat, contramesures per a la millora de la confiabilitat i les interdependències amb les altres capes. Aquest model permet el mesurament i l'avaluació de la confiabilitat del cas d'ús a l'Antàrtida. Donades les condicions hostils i les limitacions de la tecnologia utilitzada en aquest cas d’ús, es valida el model i s’avalua el servei de telemetria a través de simulacions en Riverbed Modeler. Per obtenir valors anticipats de la confiabilitat esperada, l'arquitectura proposada es modela per avaluar els resultats amb diferents configuracions previ al seu desplegament en proves de camp. L'arquitectura proposada passa per tres principals iteracions de millora de la confiabilitat. A la primera iteració, s'explora l'ús de mecanismes de consens i gestió de la confiança social per aprofitar la redundància de sensors. En la segona iteració, s’avalua l’ús de protocols de transport moderns per al cas d’ús antàrtic. L’última iteració d’aquesta tesi avalua l’ús d’una arquitectura de xarxa tolerant al retard (DTN) utilitzant el Bundle Protocol (BP) per millorar la confiabilitat del sistema. Finalment, es presenta una prova de concepte (PoC) amb maquinari real que es va desplegar a la campanya antàrtica 2021-2022, descrivint les proves de camp funcionals realitzades a l'Antàrtida i Catalunya.Esta tesis tiene como objetivo lograr un intercambio de datos confiable en un entorno hostil mejorando su confiabilidad mediante el diseño de un modelo completo que tenga en cuenta las diferentes capas de confiabilidad y mediante la implementación de las contramedidas asociadas al modelo. La tesis se centra en el caso de uso del proyecto SHETLAND-NET, con el objetivo de desplegar una arquitectura de Internet de las cosas (IoT) híbrida con comunicaciones LoRa y de onda ionosférica de incidencia casi vertical (NVIS) para ofrecer un servicio de telemetría para el monitoreo del “permafrost” en la Antártida. Para cumplir con los objetivos de la tesis, en primer lugar, se realiza una revisión del estado del arte en confiabilidad para proponer una definición y alcance del término confiabilidad. Partiendo de aquí, se diseña un modelo de confiabilidad de cuatro capas, donde cada capa se caracteriza por su alcance, métrica para la cuantificación de la confiabilidad, contramedidas para la mejora de la confiabilidad y las interdependencias con las otras capas. Este modelo permite la medición y evaluación de la confiabilidad del caso de uso en la Antártida. Dadas las condiciones hostiles y las limitaciones de la tecnología utilizada en este caso de uso, se valida el modelo y se evalúa el servicio de telemetría a través de simulaciones en Riverbed Modeler. Para obtener valores anticipados de la confiabilidad esperada, la arquitectura propuesta es modelada para evaluar los resultados con diferentes configuraciones previo a su despliegue en pruebas de campo. La arquitectura propuesta pasa por tres iteraciones principales de mejora de la confiabilidad. En la primera iteración, se explora el uso de mecanismos de consenso y gestión de la confianza social para aprovechar la redundancia de sensores. En la segunda iteración, se evalúa el uso de protocolos de transporte modernos para el caso de uso antártico. La última iteración de esta tesis evalúa el uso de una arquitectura de red tolerante al retardo (DTN) utilizando el Bundle Protocol (BP) para mejorar la confiabilidad del sistema. Finalmente, se presenta una prueba de concepto (PoC) con hardware real que se desplegó en la campaña antártica 2021-2022, describiendo las pruebas de campo funcionales realizadas en la Antártida y Cataluña.This thesis aims at achieving reliable data exchange over a harsh environment by improving its trustworthiness through the design of a complete model that takes into account the different layers of trustworthiness and through the implementation of the model’s associated countermeasures. The thesis focuses on the use case of the SHETLAND-NET project, aiming to deploy a hybrid Internet of Things (IoT) architecture with LoRa and Near Vertical Incidence Skywave (NVIS) communications to offer a telemetry service for permafrost monitoring in Antarctica. To accomplish the thesis objectives, first, a review of the state of the art in trustworthiness is carried out to propose a definition and scope of the trustworthiness term. From these, a four-layer trustworthiness model is designed, with each layer characterized by its scope, metric for trustworthiness accountability, countermeasures for trustworthiness improvement, and the interdependencies with the other layers. This model enables trustworthiness accountability and assessment of the Antarctic use case. Given the harsh conditions and the limitations of the use technology in this use case, the model is validated and the telemetry service is evaluated through simulations in Riverbed Modeler. To obtain anticipated values of the expected trustworthiness, the proposal has been modeled to evaluate the performance with different configurations prior to its deployment in the field. The proposed architecture goes through three major iterations of trustworthiness improvement. In the first iteration, using social trust management and consensus mechanisms is explored to take advantage of sensor redundancy. In the second iteration, the use of modern transport protocols is evaluated for the Antarctic use case. The final iteration of this thesis assesses using a Delay Tolerant Network (DTN) architecture using the Bundle Protocol (BP) to improve the system’s trustworthiness. Finally, a Proof of Concept (PoC) with real hardware that was deployed in the 2021-2022 Antarctic campaign is presented, describing the functional tests performed in Antarctica and Catalonia

    Study of a unified hardware and software fault-tolerant architecture

    Get PDF
    A unified architectural concept, called the Fault Tolerant Processor Attached Processor (FTP-AP), that can tolerate hardware as well as software faults is proposed for applications requiring ultrareliable computation capability. An emulation of the FTP-AP architecture, consisting of a breadboard Motorola 68010-based quadruply redundant Fault Tolerant Processor, four VAX 750s as attached processors, and four versions of a transport aircraft yaw damper control law, is used as a testbed in the AIRLAB to examine a number of critical issues. Solutions of several basic problems associated with N-Version software are proposed and implemented on the testbed. This includes a confidence voter to resolve coincident errors in N-Version software. A reliability model of N-Version software that is based upon the recent understanding of software failure mechanisms is also developed. The basic FTP-AP architectural concept appears suitable for hosting N-Version application software while at the same time tolerating hardware failures. Architectural enhancements for greater efficiency, software reliability modeling, and N-Version issues that merit further research are identified

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio
    corecore