1,464 research outputs found

    A numerical comparison between degenerate parabolic and quasilinear hyperbolic models of cell movements under chemotaxis

    Full text link
    We consider two models which were both designed to describe the movement of eukaryotic cells responding to chemical signals. Besides a common standard parabolic equation for the diffusion of a chemoattractant, like chemokines or growth factors, the two models differ for the equations describing the movement of cells. The first model is based on a quasilinear hyperbolic system with damping, the other one on a degenerate parabolic equation. The two models have the same stationary solutions, which may contain some regions with vacuum. We first explain in details how to discretize the quasilinear hyperbolic system through an upwinding technique, which uses an adapted reconstruction, which is able to deal with the transitions to vacuum. Then we concentrate on the analysis of asymptotic preserving properties of the scheme towards a discretization of the parabolic equation, obtained in the large time and large damping limit, in order to present a numerical comparison between the asymptotic behavior of these two models. Finally we perform an accurate numerical comparison of the two models in the time asymptotic regime, which shows that the respective solutions have a quite different behavior for large times.Comment: One sentence modified at the end of Section 4, p. 1

    Strongly hyperbolic second order Einstein's evolution equations

    Full text link
    BSSN-type evolution equations are discussed. The name refers to the Baumgarte, Shapiro, Shibata, and Nakamura version of the Einstein evolution equations, without introducing the conformal-traceless decomposition but keeping the three connection functions and including a densitized lapse. It is proved that a pseudo-differential first order reduction of these equations is strongly hyperbolic. In the same way, densitized Arnowitt-Deser-Misner evolution equations are found to be weakly hyperbolic. In both cases, the positive densitized lapse function and the spacelike shift vector are arbitrary given fields. This first order pseudodifferential reduction adds no extra equations to the system and so no extra constraints.Comment: LaTeX, 16 pages, uses revtex4. Referee corections and new appendix added. English grammar improved; typos correcte

    A direct primitive variable recovery scheme for hyperbolic conservative equations: the case of relativistic hydrodynamics

    Get PDF
    In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and "Rankine-Hugoniot" jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges.Comment: 19 pages, 6 figures, 2 tables. Accepted for publication in PLOS ON

    A Scheme to Numerically Evolve Data for the Conformal Einstein Equation

    Get PDF
    This is the second paper in a series describing a numerical implementation of the conformal Einstein equation. This paper deals with the technical details of the numerical code used to perform numerical time evolutions from a "minimal" set of data. We outline the numerical construction of a complete set of data for our equations from a minimal set of data. The second and the fourth order discretisations, which are used for the construction of the complete data set and for the numerical integration of the time evolution equations, are described and their efficiencies are compared. By using the fourth order scheme we reduce our computer resource requirements --- with respect to memory as well as computation time --- by at least two orders of magnitude as compared to the second order scheme.Comment: 20 pages, 12 figure

    On Difference Schemes for Quasilinear Evolution Problems

    No full text
    corecore