7 research outputs found

    Principal component and multiple correspondence analysis for handling mixed variables in the smoothed location model

    Get PDF
    The issue of classifying objects into groups when the measured variables are mixtures of continuous and binary variables has attracted the attention of statisticians. Among the discriminant methods in classification, Smoothed Location Model (SLM) is used to handle data that contains both continuous and binary variables simultaneously. However, this model is infeasible if the data is having a large number of binary variables. The presence of huge binary variables will create numerous multinomial cells that will later cause the occurrence of large number of empty cells. Past studies have shown that the occurrence of many empty cells affected the performance of the constructed smoothed location model. In order to overcome the problem of many empty cells due to large number of measured variables (mainly binary), this study proposes four new SLMs by combining the existing SLM with Principal Component Analysis (PCA) and four types of Multiple Correspondence Analysis (MCA). PCA is used to handle large continuous variables whereas MCA is used to deal with huge binary variables. The performance of the four proposed models, SLM+PCA+Indicator MCA, SLM+PCA+Burt MCA, SLM+PCA+Joint Correspondence Analysis (JCA), and SLM+PCA+Adjusted MCA are compared based on the misclassification rate. Results of a simulation study show that SLM+PCA+JCA model performs the best in all tested conditions since it successfully extracted the smallest amount of binary components and executed with the shortest computational time. Investigations on a real data set of full breast cancer also showed that this model produces the lowest misclassification rate. The next lowest misclassification rate is obtained by SLM+PCA+Adjusted MCA followed by SLM+PCA+Burt MCA and SLM+PCA+Indicator MCA models. Although SLM+PCA+Indicator MCA model gives the poorest performance but it is still better than a few existing classification methods. Overall, the developed smoothed location models can be considered as alternative methods for classification tasks in handling large number of mixed variables, mainly the binary

    New discrimination procedure of location model for handling large categorical variables

    Get PDF
    The location model proposed in the past is a predictive discriminant rule that can classify new observations into one of two predefined groups based on mixtures of continuous and categorical variables. The ability of location model to discriminate new observation correctly is highly dependent on the number of multinomial cells created by the number of categorical variables. This study conducts a preliminary investigation to show the location model that uses maximum likelihood estimation has high misclassification rate up to 45% on average in dealing with more than six categorical variables for all 36 data tested. Such model indicated highly incorrect prediction as this model performed badly for large categorical variables even with large sample size. To alleviate the high rate of misclassification, a new strategy is embedded in the discriminant rule by introducing nonlinear principal component analysis (NPCA) into the classical location model (cLM), mainly to handle the large number of categorical variables. This new strategy is investigated on some simulation and real datasets through the estimation of misclassification rate using leave-one-out method. The results from numerical investigations manifest the feasibility of the proposed model as the misclassification rate is dramatically decreased compared to the cLM for all 18 different data settings. A practical application using real dataset demonstrates a significant improvement and obtains comparable result among the best methods that are compared. The overall findings reveal that the proposed model extended the applicability range of the location model as previously it was limited to only six categorical variables to achieve acceptable performance. This study proved that the proposed model with new discrimination procedure can be used as an alternative to the problems of mixed variables classification, primarily when facing with large categorical variables

    Variable extractions using principal component analysis and multiple correspondence analysis for large number of mixed variables classification problems

    Get PDF
    Non-parametric smoothed location model is another powerful approach which can be used to discriminate the objects that contain both continuous and binary variables.However, the smoothed location model is infeasible in estimating parameters when a large number of binary variables involved in the study.To handle this issue, the combination of two variable extraction techniques namely principal component analysis (PCA) and multiple correspondence analysis (MCA) are carried out before the construction of the smoothed location model. In fact, there are four types of MCA but only Indicator MCA and joint correspondence analysis (JCA) will be discussed in this article.Thus, the performance of the smoothed location model together with combination of PCA and two types of MCA, i.e. Indicator MCA and JCA, will be compared and evaluated.The overall results from simulation study show that the smoothed location model performed better when the binary extraction is done by JCA rather than the Indicator MCA in terms of misclassification rate and computational efficiency

    New smoothed location models integrated with PCA and two types of MCA for handling large number of mixed continuous and binary variables

    Get PDF
    The issue of classifying objects into groups when measured variables in an experiment are mixed has attracted the attention of statisticians.The Smoothed Location Model (SLM) appears to be a popular classification method to handle data containing both continuous and binary variables simultaneously.However, SLM is infeasible for a large number of binary variables due to the occurrence of numerous empty cells.Therefore, this study aims to construct new SLMs by integrating SLM with two variable extraction techniques, Principal Component Analysis (PCA) and two types of Multiple Correspondence Analysis (MCA) in order to reduce the large number of mixed variables, primarily the binary ones.The performance of the newly constructed models, namely the SLM+PCA+Indicator MCA and SLM+PCA+Burt MCA are examined based on misclassification rate. Results from simulation studies for a sample size of n=60 show that the SLM+PCA+Indicator MCA model provides perfect classification when the sizes of binary variables (b) are 5 and 10. For b=20, the SLM+PCA+Indicator MCA model produces misclassification rates of 0.3833, 0.6667 and 0.3221 for n=60, n=120 and n=180, respectively. Meanwhile, the SLM+PCA+Burt MCA model provides a perfect classification when the sizes of the binary variables are 5, 10, 15 and 20 and yields a small misclassification rate as 0.0167 when b=25. Investigations into real dataset demonstrate that both of the newly constructed models yield low misclassification rates with 0.3066 and 0.2336 respectively, in which the SLM+PCA+Burt MCA model performed the best among all the classification methods compared.The findings reveal that the two new models of SLM integrated with two variable extraction techniques can be good alternative methods for classification purposes in handling mixed variable problems, mainly when dealing with large binary variables

    Integrated smoothed location model and data reduction approaches for multi variables classification

    Get PDF
    Smoothed Location Model is a classification rule that deals with mixture of continuous variables and binary variables simultaneously. This rule discriminates groups in a parametric form using conditional distribution of the continuous variables given each pattern of the binary variables. To conduct a practical classification analysis, the objects must first be sorted into the cells of a multinomial table generated from the binary variables. Then, the parameters in each cell will be estimated using the sorted objects. However, in many situations, the estimated parameters are poor if the number of binary is large relative to the size of sample. Large binary variables will create too many multinomial cells which are empty, leading to high sparsity problem and finally give exceedingly poor performance for the constructed rule. In the worst case scenario, the rule cannot be constructed. To overcome such shortcomings, this study proposes new strategies to extract adequate variables that contribute to optimum performance of the rule. Combinations of two extraction techniques are introduced, namely 2PCA and PCA+MCA with new cutpoints of eigenvalue and total variance explained, to determine adequate extracted variables which lead to minimum misclassification rate. The outcomes from these extraction techniques are used to construct the smoothed location models, which then produce two new approaches of classification called 2PCALM and 2DLM. Numerical evidence from simulation studies demonstrates that the computed misclassification rate indicates no significant difference between the extraction techniques in normal and non-normal data. Nevertheless, both proposed approaches are slightly affected for non-normal data and severely affected for highly overlapping groups. Investigations on some real data sets show that the two approaches are competitive with, and better than other existing classification methods. The overall findings reveal that both proposed approaches can be considered as improvement to the location model, and alternatives to other classification methods particularly in handling mixed variables with large binary size

    Pertanika Journal of Science & Technology

    Get PDF
    corecore