51,661 research outputs found

    Towards Efficient Maximum Likelihood Estimation of LPV-SS Models

    Full text link
    How to efficiently identify multiple-input multiple-output (MIMO) linear parameter-varying (LPV) discrete-time state-space (SS) models with affine dependence on the scheduling variable still remains an open question, as identification methods proposed in the literature suffer heavily from the curse of dimensionality and/or depend on over-restrictive approximations of the measured signal behaviors. However, obtaining an SS model of the targeted system is crucial for many LPV control synthesis methods, as these synthesis tools are almost exclusively formulated for the aforementioned representation of the system dynamics. Therefore, in this paper, we tackle the problem by combining state-of-the-art LPV input-output (IO) identification methods with an LPV-IO to LPV-SS realization scheme and a maximum likelihood refinement step. The resulting modular LPV-SS identification approach achieves statical efficiency with a relatively low computational load. The method contains the following three steps: 1) estimation of the Markov coefficient sequence of the underlying system using correlation analysis or Bayesian impulse response estimation, then 2) LPV-SS realization of the estimated coefficients by using a basis reduced Ho-Kalman method, and 3) refinement of the LPV-SS model estimate from a maximum-likelihood point of view by a gradient-based or an expectation-maximization optimization methodology. The effectiveness of the full identification scheme is demonstrated by a Monte Carlo study where our proposed method is compared to existing schemes for identifying a MIMO LPV system

    Model-based Recursive Partitioning for Subgroup Analyses

    Get PDF
    The identification of patient subgroups with differential treatment effects is the first step towards individualised treatments. A current draft guideline by the EMA discusses potentials and problems in subgroup analyses and formulated challenges to the development of appropriate statistical procedures for the data-driven identification of patient subgroups. We introduce model-based recursive partitioning as a procedure for the automated detection of patient subgroups that are identifiable by predictive factors. The method starts with a model for the overall treatment effect as defined for the primary analysis in the study protocol and uses measures for detecting parameter instabilities in this treatment effect. The procedure produces a segmented model with differential treatment parameters corresponding to each patient subgroup. The subgroups are linked to predictive factors by means of a decision tree. The method is applied to the search for subgroups of patients suffering from amyotrophic lateral sclerosis that differ with respect to their Riluzole treatment effect, the only currently approved drug for this disease.Comment: 26 pages, 6 figure

    Bayesian Regularisation in Structured Additive Regression Models for Survival Data

    Get PDF
    During recent years, penalized likelihood approaches have attracted a lot of interest both in the area of semiparametric regression and for the regularization of high-dimensional regression models. In this paper, we introduce a Bayesian formulation that allows to combine both aspects into a joint regression model with a focus on hazard regression for survival times. While Bayesian penalized splines form the basis for estimating nonparametric and flexible time-varying effects, regularization of high-dimensional covariate vectors is based on scale mixture of normals priors. This class of priors allows to keep a (conditional) Gaussian prior for regression coefficients on the predictor stage of the model but introduces suitable mixture distributions for the Gaussian variance to achieve regularization. This scale mixture property allows to device general and adaptive Markov chain Monte Carlo simulation algorithms for fitting a variety of hazard regression models. In particular, unifying algorithms based on iteratively weighted least squares proposals can be employed both for regularization and penalized semiparametric function estimation. Since sampling based estimates do no longer have the variable selection property well-known for the Lasso in frequentist analyses, we additionally consider spike and slab priors that introduce a further mixing stage that allows to separate between influential and redundant parameters. We demonstrate the different shrinkage properties with three simulation settings and apply the methods to the PBC Liver dataset

    The Effects of Aquatic Invasive Species on Property Values: Evidence from a Quasi-random Experiment

    Get PDF
    This study uses hedonic analysis to estimate the effects of a common aquatic invasive species--Eurasian Watermilfoil (milfoil)--on property values across an extensive system of over 170 lakes in the northern forest region of Wisconsin. Since milfoil is inadvertently spread by recreational boaters, and since boaters are more likely to visit attractive lakes, variables indicating the presence of milfoil are endogenous in a hedonic model. Using an identification strategy based on a spatial difference-in-differences specification, results indicate that lakes invaded with milfoil experienced an average 13% decrease in land values after invasion.

    Structured Learning in Time-dependent Cox Models

    Full text link
    Cox models with time-dependent coefficients and covariates are widely used in survival analysis. In high-dimensional settings, sparse regularization techniques are employed for variable selection, but existing methods for time-dependent Cox models lack flexibility in enforcing specific sparsity patterns (i.e., covariate structures). We propose a flexible framework for variable selection in time-dependent Cox models, accommodating complex selection rules. Our method can adapt to arbitrary grouping structures, including interaction selection, temporal, spatial, tree, and directed acyclic graph structures. It achieves accurate estimation with low false alarm rates. We develop the sox package, implementing a network flow algorithm for efficiently solving models with complex covariate structures. Sox offers a user-friendly interface for specifying grouping structures and delivers fast computation. Through examples, including a case study on identifying predictors of time to all-cause death in atrial fibrillation patients, we demonstrate the practical application of our method with specific selection rules.Comment: 49 pages (with 19 pages of appendix),9 tables, 3 figure
    • …
    corecore